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PREFACE

Pattern recognition is everywhere. It is the technology behind automatically identi-
fying fraudulent bank transactions, giving verbal instructions to your mobile phone,
predicting oil deposit odds, or segmenting a brain tumour within a magnetic resonance
image.

A decade has passed since the first edition of this book. Combining classifiers,
also known as “classifier ensembles,” has flourished into a prolific discipline. Viewed
from the top, classifier ensembles reside at the intersection of engineering, comput-
ing, and mathematics. Zoomed in, classifier ensembles are fuelled by advances in
pattern recognition, machine learning and data mining, among others. An ensem-
ble aggregates the “opinions” of several pattern classifiers in the hope that the new
opinion will be better than the individual ones. Vox populi, vox Dei.

The interest in classifier ensembles received a welcome boost due to the high-
profile Netflix contest. The world’s research creativeness was challenged using a
difficult task and a substantial reward. The problem was to predict whether a person
will enjoy a movie based on their past movie preferences. A Grand Prize of $1,000,000
was to be awarded to the team who first achieved a 10% improvement on the clas-
sification accuracy of the existing system Cinematch. The contest was launched in
October 2006, and the prize was awarded in September 2009. The winning solution
was nothing else but a rather fancy classifier ensemble.

What is wrong with the good old single classifiers? Jokingly, I often put up a slide
in presentations, with a multiple-choice question. The question is “Why classifier
ensembles?” and the three possible answers are:

(a) because we like to complicate entities beyond necessity (anti-Occam’s
razor);

xv



xvi PREFACE

(b) because we are lazy and stupid and cannot be bothered to design and train one
single sophisticated classifier; and

(c) because democracy is so important to our society, it must be important to
classification.

Funnily enough, the real answer hinges on choice (b). Of course, it is not a matter
of laziness or stupidity, but the realization that a complex problem can be elegantly
solved using simple and manageable tools. Recall the invention of the error back-
propagation algorithm followed by the dramatic resurfacing of neural networks in
the 1980s. Neural networks were proved to be universal approximators with unlim-
ited flexibility. They could approximate any classification boundary in any number
of dimensions. This capability, however, comes at a price. Large structures with
a vast number of parameters have to be trained. The initial excitement cooled
down as it transpired that massive structures cannot be easily trained with suffi-
cient guarantees of good generalization performance. Until recently, a typical neural
network classifier contained one hidden layer with a dozen neurons, sacrificing the so
acclaimed flexibility but gaining credibility. Enter classifier ensembles! Ensembles
of simple neural networks are among the most versatile and successful ensemble
methods.

But the story does not end here. Recent studies have rekindled the excitement
of using massive neural networks drawing upon hardware advances such as parallel
computations using graphics processing units (GPU) [75]. The giant data sets neces-
sary for training such structures are generated by small distortions of the available set.
These conceptually different rival approaches to machine learning can be regarded
as divide-and-conquer and brute force, respectively. It seems that the jury is still out
about their relative merits. In this book we adopt the divide-and-conquer approach.

THE PLAYING FIELD

Writing the first edition of the book felt like the overwhelming task of bringing
structure and organization to a hoarder’s attic. The scenery has changed markedly
since then. The series of workshops on Multiple Classifier Systems (MCS), run
since 2000 by Fabio Roli and Josef Kittler [338], served as a beacon, inspiration,
and guidance for experienced and new researchers alike. Excellent surveys shaped
the field, among which are the works by Polikar [311], Brown [53], and Valentini
and Re [397]. Better still, four recent texts together present accessible, in-depth,
comprehensive, and exquisite coverage of the classifier ensemble area: Rokach [335],
Zhou [439], Schapire and Freund [351], and Seni and Elder [355]. This gives me the
comfort and luxury to be able to skim over topics which are discussed at length and
in-depth elsewhere, and pick ones which I believe deserve more exposure or which I
just find curious.

As in the first edition, I have no ambition to present an accurate snapshot of the
state of the art. Instead, I have chosen to explain and illustrate some methods and
algorithms, giving sufficient detail so that the reader can reproduce them in code.



PREFACE xvii

Although I venture an opinion based on general consensus and examples in the text,
this should not be regarded as a guide for preferring one method to another.

SOFTWARE

A rich set of classifier ensemble methods is implemented in WEKA1 [167], a collec-
tion of machine learning algorithms for data-mining tasks. PRTools2 is a MATLAB
toolbox for pattern recognition developed by the Pattern Recognition Research Group
of the TU Delft, The Netherlands, led by Professor R. P. W. (Bob) Duin. An industry-
oriented spin-off toolbox, called “perClass”3 was designed later. Classifier ensembles
feature prominently in both packages.

PRTools and perClass are instruments for advanced MATLAB programmers and
can also be used by practitioners after a short training. The recent edition of MATLAB
Statistics toolbox (2013b) includes a classifier ensemble suite as well.

Snippets of MATLAB DIY (do-it-yourself) code for illustrating methodologies
and concepts are given in the chapter appendices. MATLAB was seen as a suitable
language for such illustrations because it often looks like executable pseudo-code.
A programming language is like a living creature—it grows, develops, changes, and
breeds. The code in the book is written by today’s versions, styles, and conventions.
It does not, by any means, measure up to the richness, elegance, and sophistication
of PRTools and perClass. Aimed at simplicity, the code is not fool-proof nor is it
optimized for time or other efficiency criteria. Its sole purpose is to enable the reader
to grasp the ideas and run their own small-scale experiments.

STRUCTURE AND WHAT IS NEW IN THE SECOND EDITION

The book is organized as follows.
Chapter 1, Fundamentals, gives an introduction of the main concepts in pattern

recognition, Bayes decision theory, and experimental comparison of classifiers. A
new treatment of the classifier comparison issue is offered (after Demšar [89]). The
discussion of bias and variance decomposition of the error which was given in a
greater level of detail in Chapter 7 before (bagging and boosting) is now briefly
introduced and illustrated in Chapter 1.

Chapter 2, Base Classifiers, contains methods and algorithms for designing the
individual classifiers. In this edition, a special emphasis is put on the stability of the
classifier models. To aid the discussions and illustrations throughout the book, a toy
two-dimensional data set was created called the fish data. The Naı̈ve Bayes classifier
and the support vector machine classifier (SVM) are brought to the fore as they are
often used in classifier ensembles. In the final section of this chapter, I introduce the
triangle diagram that can enrich the analyses of pattern recognition methods.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://prtools.org/
3http://perclass.com/index.php/html/

http://prtools.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://perclass.com/index.php/html/
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Chapter 3, Multiple Classifier Systems, discusses some general questions in com-
bining classifiers. It has undergone a major makeover. The new final section, “Quo
Vadis?,” asks questions such as “Are we reinventing the wheel?” and “Has the progress
thus far been illusory?” It also contains a bibliometric snapshot of the area of classifier
ensembles as of January 4, 2013 using Thomson Reuters’ Web of Knowledge (WoK).

Chapter 4, Combining Label Outputs, introduces a new theoretical framework
which defines the optimality conditions of several fusion rules by progressively
relaxing an assumption. The Behavior Knowledge Space method is trimmed down
and illustrated better in this edition. The combination method based on singular value
decomposition (SVD) has been dropped.

Chapter 5, Combining Continuous-Valued Outputs, summarizes classifier fusion
methods such as simple and weighted average, decision templates and a classifier used
as a combiner. The division of methods into class-conscious and class-independent
in the first edition was regarded as surplus and was therefore abandoned.

Chapter 6, Ensemble Methods, grew out of the former Bagging and Boosting
chapter. It now accommodates on an equal keel the reigning classics in classifier
ensembles: bagging, random forest, AdaBoost and random subspace, as well as a
couple of newcomers: rotation forest and random oracle. The Error Correcting Output
Code (ECOC) ensemble method is included here, having been cast as “Miscellanea”
in the first edition of the book. Based on the interest in this method, as well as its
success, ECOC’s rightful place is together with the classics.

Chapter 7, Classifier Selection, explains why this approach works and how clas-
sifier competence regions are estimated. The chapter contains new examples and
illustrations.

Chapter 8, Diversity, gives a modern view on ensemble diversity, raising at the
same time some old questions, which are still puzzling the researchers in spite of
the remarkable progress made in the area. There is a frighteningly large number of
possible “new” diversity measures, lurking as binary similarity and distance mea-
sures (take for example Choi et al.’s study [74] with 76, s-e-v-e-n-t-y s-i-x, such
measures). And we have not even touched the continuous-valued outputs and the
possible diversity measured from those. The message in this chapter is stronger now:
we hardly need any more diversity measures; we need to pick a few and learn how
to use them. In view of this, I have included a theoretical bound on the kappa-error
diagram [243] which shows how much space is still there for new ensemble methods
with engineered diversity.

Chapter 9, Ensemble Feature Selection, considers feature selection by the ensemble
and for the ensemble. It was born from a section in the former Chapter 8, Miscellanea.
The expansion was deemed necessary because of the surge of interest to ensemble
feature selection from a variety of application areas, notably so from bioinformatics
[346]. I have included a stability index between feature subsets or between feature
rankings [236].

I picked a figure from each chapter to create a small graphical guide to the contents
of the book as illustrated in Figure 1.

The former Theory chapter (Chapter 9) was dissolved; parts of it are now blended
with the rest of the content of the book. Lengthier proofs are relegated to the respective
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chapter appendices. Some of the proofs and derivations were dropped altogether, for
example, the theory behind the magic of AdaBoost. Plenty of literature sources can
be consulted for the proofs and derivations left out.

The differences between the two editions reflect the fact that the classifier ensemble
research has made a giant leap; some methods and techniques discussed in the first
edition did not withstand the test of time, others were replaced with modern versions.
The dramatic expansion of some sub-areas forced me, unfortunately, to drop topics
such as cluster ensembles and stay away from topics such as classifier ensembles for:
adaptive (on-line) learning, learning in the presence of concept drift, semi-supervised
learning, active learning, handing imbalanced classes and missing values. Each of
these sub-areas will likely see a bespoke monograph in a not so distant future. I look
forward to that.
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I am humbled by the enormous volume of literature on the subject, and the
ingenious ideas and solutions within. My sincere apology to those authors, whose
excellent research into classifier ensembles went without citation in this book because
of lack of space or because of unawareness on my part.

WHO IS THIS BOOK FOR?

The book is suitable for postgraduate students and researchers in computing and
engineering, as well as practitioners with some technical background. The assumed
level of mathematics is minimal and includes a basic understanding of probabilities
and simple linear algebra. Beginner’s MATLAB programming knowledge would be
beneficial but is not essential.

Ludmila I. Kuncheva
Bangor, Gwynedd, UK
December 2013
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1
FUNDAMENTALS OF PATTERN
RECOGNITION

1.1 BASIC CONCEPTS: CLASS, FEATURE, DATA SET

A wealth of literature in the 1960s and 1970s laid the grounds for modern pattern
recognition [90,106,140,141,282,290,305,340,353,386]. Faced with the formidable
challenges of real-life problems, elegant theories still coexist with ad hoc ideas,
intuition, and guessing.

Pattern recognition is about assigning labels to objects. Objects are described by
features, also called attributes. A classic example is recognition of handwritten digits
for the purpose of automatic mail sorting. Figure 1.1 shows a small data sample. Each
15×15 image is one object. Its class label is the digit it represents, and the features
can be extracted from the binary matrix of pixels.

1.1.1 Classes and Class Labels

Intuitively, a class contains similar objects, whereas objects from different classes
are dissimilar. Some classes have a clear-cut meaning, and in the simplest case are
mutually exclusive. For example, in signature verification, the signature is either
genuine or forged. The true class is one of the two, regardless of what we might
deduce from the observation of a particular signature. In other problems, classes
might be difficult to define, for example, the classes of left-handed and right-handed
people or ordered categories such as “low risk,” “medium risk,” and “high risk.”

Combining Pattern Classifiers: Methods and Algorithms, Second Edition. Ludmila I. Kuncheva.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 FUNDAMENTALS OF PATTERN RECOGNITION

FIGURE 1.1 Example of images of handwritten digits.

We shall assume that there are c possible classes in the problem, labeled from 𝜔1
to 𝜔c, organized as a set of labels Ω = {𝜔1,… ,𝜔c}, and that each object belongs to
one and only one class.

1.1.2 Features

Throughout this book we shall consider numerical features. Such are, for example,
systolic blood pressure, the speed of the wind, a company’s net profit in the past 12
months, the gray-level intensity of a pixel. Real-life problems are invariably more
complex than that. Features can come in the forms of categories, structures, names,
types of entities, hierarchies, so on. Such nonnumerical features can be transformed
into numerical ones. For example, a feature “country of origin” can be encoded as
a binary vector with number of elements equal to the number of possible countries
where each bit corresponds to a country. The vector will contain 1 for a specified
country and zeros elsewhere. In this way one feature gives rise to a collection of
related numerical features. Alternatively, we can keep just the one feature where the
categories are represented by different values. Depending on the classifier model
we choose, the ordering of the categories and the scaling of the values may have
a positive, negative, or neutral effect on the relevance of the feature. Sometimes
the methodologies for quantifying features are highly subjective and heuristic. For
example, sitting an exam is a methodology to quantify a student’s learning progress.
There are also unmeasurable features that we as humans can assess intuitively but
can hardly explain. Examples of such features are sense of humor, intelligence,
and beauty.

Once in a numerical format, the feature values for a given object are arranged as an
n-dimensional vector x = [x1,… , xn]T ∈ R

n. The real space R
n is called the feature

space, each axis corresponding to a feature.
Sometimes an object can be represented by multiple, disjoint subsets of features.

For example, in identity verification, three different sensing modalities can be used
[207]: frontal face, face profile, and voice. Specific feature subsets are measured
for each modality and then the feature vector is composed of three sub-vectors,
x = [x(1), x(2), x(3)]T . We call this distinct pattern representation after Kittler et al.
[207]. As we shall see later, an ensemble of classifiers can be built using distinct
pattern representation, with one classifier on each feature subset.
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1.1.3 Data Set

The information needed to design a classifier is usually in the form of a labeled
data set Z = {z1,… , zN}, zj ∈ R

n. The class label of zj is denoted by yj ∈ Ω, j =
1,… , N. A typical data set is organized as a matrix of N rows (objects, also called
examples or instances) by n columns (features), with an extra column with the class
labels

Data set =

⎡⎢⎢⎢⎢⎣
z11, z12, ⋯ z1n

z21, z22, ⋯ z2n

⋮

zN1, zN2, ⋯ zNn

⎤⎥⎥⎥⎥⎦
Labels =

⎡⎢⎢⎢⎢⎣
y1

y2

⋮

yN

⎤⎥⎥⎥⎥⎦
.

Entry zj,i is the value of the i-th feature for the j-th object.

◻◼ Example 1.1 A shape–color synthetic data set
Consider a data set with two classes, both containing a collection of the following
objects: ▵, �, ○, ▴, �, and �. Figure 1.2 shows an example of such a data set. The
collections of objects for the two classes are plotted next to one another. Class 𝜔1 is
shaded. The features are only the shape and the color (black or white); the positioning
of the objects within the two dimensions is not relevant. The data set contains 256
objects. Each object is labeled in its true class. We can code the color as 0 for white
and 1 for black, and the shapes as triangle = 1, square = 2, and circle = 3.

FIGURE 1.2 A shape–color data set example. Class 𝜔1 is shaded.
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Based on the two features, the classes are not completely separable. It can be
observed that there are mostly circles in 𝜔1 and mostly squares in 𝜔2. Also, the
proportion of black objects in class 𝜔2 is much larger. Thus, if we observe a color and
a shape, we can make a decision about the class label. To evaluate the distribution of
different objects in the two classes, we can count the number of appearances of each
object. The distributions are as follows:

Object ▵ � ◦ ▴ � �

Class 𝜔1 9 22 72 1 4 20
Class 𝜔2 4 25 5 8 79 7

Decision 𝜔1 𝜔2 𝜔1 𝜔2 𝜔2 𝜔1

With the distributions obtained from the given data set, it makes sense to choose
class 𝜔1 if we have a circle (of any color) or a white triangle. For all other possible
combinations of values, we should choose label 𝜔2. Thus using only these two
features for labeling, we will make 43 errors (16.8%).

A couple of questions spring to mind. First, if the objects are not discernible, how
have they been labeled in the first place? Second, how far can we trust the estimated
distributions to generalize over unseen data?

To answer the first question, we should be aware that the features supplied by
the user are not expected to be perfect. Typically there is a way to determine the
true class label, but the procedure may not be available, affordable, or possible at
all. For example, certain medical conditions can be determined only post mortem.
An early diagnosis inferred through pattern recognition may decide the outcome
for the patient. As another example, consider classifying of expensive objects on
a production line as good or defective. Suppose that an object has to be destroyed
in order to determine the true label. It is desirable that the labeling is done using
measurable features that do not require breaking of the object. Labeling may be too
expensive, involving time and expertise which are not available. The problem then
becomes a pattern recognition one, where we try to find the class label as correctly
as possible from the available features.

Returning to the example in Figure 1.2, suppose that there is a third (unavailable)
feature which could be, for example, the horizontal axis in the plot. This feature
would have been used to label the data, but the quest is to find the best possible
labeling method without it.

The second question “How far can we trust the estimated distributions to generalize
over unseen data?” has inspired decades of research and will be considered later in
this text.

◻◼ Example 1.2 The Iris data set
The Iris data set was collected by the American botanist Edgar Anderson and subse-
quently analyzed by the English geneticist and statistician Sir Ronald Aylmer Fisher
in 1936 [127]. The Iris data set has become one of the iconic hallmarks of pattern
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FIGURE 1.3 Iris flower specimen

recognition and has been used in thousands of publications over the years [39, 348].
This book would be incomplete without a mention of it.

The Iris data still serves as a prime example of a “well-behaved” data set. There
are three balanced classes, each represented with a sample of 50 objects. The classes
are species of the Iris flower (Figure 1.3): setosa, versicolor, and virginica. The four
features describing an Iris flower are sepal length, sepal width, petal length, and petal
width. The classes form neat elliptical clusters in the four-dimensional space. Scatter
plots of the data in the spaces spanned by the six pairs of features are displayed in
Figure 1.4. Class setosa is clearly distinguishable from the other two classes in all
projections.
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FIGURE 1.4 Scatter plot of the Iris data in the two-dimensional spaces spanned by the six
pairs of features.
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1.1.4 Generate Your Own Data

Trivial as it might be, sometimes you need a piece of code to generate your own data
set with specified characteristics in order to test your own classification method.

1.1.4.1 The Normal Distribution The normal distribution (or also Gaussian dis-
tribution) is widespread in nature and is one of the fundamental models in statistics.
The one-dimensional normal distribution, denoted N(𝜇, 𝜎2), is characterized by mean
𝜇 ∈ R and variance 𝜎

2 ∈ R. In n dimensions, the normal distribution is character-
ized by an n-dimensional vector of the mean, 𝝁 ∈ R

n, and an n × n covariance
matrix Σ. The notation for an n-dimensional normally distributed random variable
is x ∼ N(𝝁,Σ). The normal distribution is the most natural assumption reflecting the
following situation: there is an “ideal prototype” (𝝁) and all the data are distorted
versions of it. Small distortions are more likely to occur than large distortions, caus-
ing more objects to be located in the close vicinity of the ideal prototype than far
away from it. The scatter of the points around the prototype 𝝁 is associated with the
covariance matrix Σi.

The probability density function (pdf) of x ∼ N(𝝁,Σ) is

p(x) = 1

(2𝜋)
n
2
√|Σ| exp

{
−1

2
(x − 𝝁)TΣ−1(x − 𝝁)

}
, (1.1)

where |Σ| is the determinant of Σ. For the one-dimensional case, x and 𝜇 are scalars,
and Σ reduces to the variance 𝜎

2. Equation 1.1 simplifies to

p(x) = 1√
2𝜋 𝜎

exp
{
−1

2

(x − 𝜇

𝜎

)2
}

. (1.2)

◻◼ Example 1.3 Cloud shapes and the corresponding covariance matrices
Figure 1.5 shows four two-dimensional data sets generated from the normal distribu-
tion with different covariance matrices shown underneath.
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FIGURE 1.5 Normally distributed data sets with mean [0, 0]T and different covariance
matrices shown underneath.
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Figures 1.5a and 1.5b are generated with independent (noninteracting) features.
Therefore, the data cloud is either spherical (Figure 1.5a), or stretched along one
or more coordinate axes (Figure 1.5b). Notice that for these cases the off-diagonal
entries of the covariance matrix are zeros. Figures 1.5c and 1.5d represent cases
where the features are dependent. The data for this example was generated using the
function samplegaussian in Appendix 1.A.1.

In the case of independent features we can decompose the n-dimensional pdf as a
product of n one-dimensional pdfs. Let 𝜎2

k be the diagonal entry of the covariance
matrix Σ for the k-th feature, and 𝜇k be the k-th component of 𝝁. Then

p(x) = 1

(2𝜋)
n
2
√|Σ| exp

{
−1

2
(x − 𝝁)TΣ−1(x − 𝝁)

}

=
n∏

k=1

(
1√

(2𝜋) 𝜎k

exp

{
−1

2

(
xk − 𝜇k

𝜎k

)2
})

. (1.3)

The cumulative distribution function for a random variable X ∈ R with a normal
distribution, Φ(z) = P(X ≤ z), is available in tabulated form from most statistical
textbooks.1

1.1.4.2 Noisy Geometric Figures Sometimes it is useful to generate your own data
set of a desired shape, prevalence of the classes, overlap, and so on. An example of a
challenging classification problem with five Gaussian classes is shown in Figure 1.6
along with the MATLAB code that generates and plots the data.

One possible way to generate data with specific geometric shapes is detailed below.
Suppose that each of the c classes is described by a shape, governed by parameter t.

FIGURE 1.6 An example of five Gaussian classes generated using the samplegaussian
function from Appendix 1.A.1.

1Φ(z) can be approximated with error at most 0.005 for 0 ≤ z ≤ 2.2 as [150]

Φ(z) = 0.5 + z(4.4 − z)
10

.
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The noise-free data is calculated from t, and then noise is added. Let ti be the parameter
for class 𝜔i, and [ai, bi] be the interval for ti describing the shape of the class. Denote
by pi the desired prevalence of class 𝜔i. Knowing that p1 +⋯ + pc = 1, we can
calculate the approximate number of samples in a data set of N objects. Let Ni be
the desired number of objects from class 𝜔i. The first step is to sample uniformly Ni
values for ti from the interval [ai, bi]. Subsequently, we find the coordinates x1,… , xn
for each element of ti. Finally, noise is added to all values. (We can use the randn
MATLAB function for this purpose.) The noise could be scaled by multiplying the
values by different constants for the different features. Alternatively, the noise could
be scaled with the feature values or the values of ti.

◻◼ Example 1.4 Ellipses data set
The code for producing this data set is given in Appendix 1.A.1. We used the
parametric equations for two-dimensional ellipses:

x(t) = xc + a cos(t) cos(𝜙) − b sin(t) sin(𝜙),

y(t) = yc + a cos(t) sin(𝜙) − b sin(t) cos(𝜙),

where (xc, yc) is the center of the ellipse, a and b are respectively the major and the
minor semi-axes of the ellipse, and 𝜙 is the angle between the x-axis and the major
axis. To traverse the whole ellipse, parameter t varies from 0 to 2𝜋.

Figure 1.7a shows a data set where the random noise is the same across both fea-
tures and all values of t. The classes have equal proportions, with 300 points from each
class. Using a single ellipse with 1000 points, Figure 1.7b demonstrates the effect of
scaling the noise with the parameter t. The MATLAB code is given in Appendix 1.A.1.

(a) (b)

FIGURE 1.7 (a) The three-ellipse data set; (b) one ellipse with noise variance proportional
to the parameter t.

1.1.4.3 Rotated Checker Board Data. This is a two-dimensional data set which
spans the unit square [0, 1] × [0, 1]. The classes are placed as the light and the dark
squares of a checker board and then the whole board is rotated at an angle 𝛼. A
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FIGURE 1.8 Rotated checker board data (100,000 points in each plot).

parameter a specifies the side of the individual square. For example, if a = 0.5, there
will be four squares in total before the rotation. Figure 1.8 shows two data sets, each
containing 5,000 points, generated with different input parameters. The MATLAB
function samplecb(N,a,alpha) in Appendix 1.A.1 generates the data.

The properties which make this data set attractive for experimental purposes are:

� The two classes are perfectly separable.
� The classification regions for the same class are disjoint.
� The boundaries are not parallel to the coordinate axes.
� The classification performance will be highly dependent on the sample size.

1.2 CLASSIFIER, DISCRIMINANT FUNCTIONS,
CLASSIFICATION REGIONS

A classifier is any function that will assign a class label to an object x:

D : R
n → Ω. (1.4)

In the “canonical model of a classifier” [106], c discriminant functions are calculated

gi : R
n → R, i = 1,… , c, (1.5)

each one yielding a score for the respective class (Figure 1.9). The object x ∈ R
n is

labeled to the class with the highest score. This labeling choice is called the maximum
membership rule. Ties are broken randomly, meaning that x is assigned randomly to
one of the tied classes.

The discriminant functions partition the feature space R
n into c decision regions

or classification regions denoted 1,… ,c:

i =
{

x
||||x ∈ R

n, gi(x) = max
k=1,…,c

gk(x)

}
, i = 1,… , c. (1.6)
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1
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…
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Feature
vector

Maximum 
selector

MAX

Discriminant functions 

Class
label

FIGURE 1.9 Canonical model of a classifier. An n-dimensional feature vector is passed
through c discriminant functions, and the largest function output determines the class label.

The decision region for class 𝜔i is the set of points for which the i-th discriminant
function has the highest score. According to the maximum membership rule, all points
in decision region i are assigned to class 𝜔i. The decision regions are specified by
the classifier D, or equivalently, by the discriminant functions G. The boundaries of
the decision regions are called classification boundaries and contain the points for
which the highest discriminant functions tie. A point on the boundary can be assigned
to any of the bordering classes. If a decision region i contains data points from the
labeled set Z with true class label 𝜔j, j ≠ i, classes 𝜔i and 𝜔j are called overlapping.
If the classes in Z can be separated completely by a hyperplane (a point in R, a line
in R

2, a plane in R
3), they are called linearly separable.

Note that overlapping classes in a given partition can be nonoverlapping if the
space was partitioned in a different way. If there are no identical points with dif-
ferent class labels in the data set Z, we can always partition the feature space into
pure classification regions. Generally, the smaller the overlapping, the better the clas-
sifier. Figure 1.10 shows an example of a two-dimensional data set and two sets
of classification regions. Figure 1.10a shows the regions produced by the nearest
neighbor classifier, where every point is labeled as its nearest neighbor. According
to these boundaries and the plotted data, the classes are nonoverlapping. However,
Figure 1.10b shows the optimal classification boundary and the optimal classification
regions which guarantee the minimum possible error for unseen data generated from
the same distributions. According to the optimal boundary, the classes are overlap-
ping. This example shows that by striving to build boundaries that give a perfect split
we may over-fit the training data.

Generally, any set of functions g1(x),… , gc(x) is a set of discriminant functions. It
is another matter how successfully these discriminant functions separate the classes.

Let G∗ = {g∗1(x),… , g∗c (x)} be a set of optimal (in some sense) discriminant
functions. We can obtain infinitely many sets of optimal discriminant functions from
G∗ by applying a monotonic transformation f (g∗i (x)) that preserves the order of the
function values for every x ∈ R

n. For example, f (𝜁 ) can be a log(𝜁 ) or a𝜁 , for a > 1.
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(a) (b)

FIGURE 1.10 Classification regions obtained from two different classifiers: (a) the 1-nn
boundary (nonoverlapping classes); (b) the optimal boundary (overlapping classes).

Applying the same f to all discriminant functions in G∗, we obtain an equivalent set
of discriminant functions. Using the maximum membership rule, x will be labeled to
the same class by any of the equivalent sets of discriminant functions.

1.3 CLASSIFICATION ERROR AND CLASSIFICATION ACCURACY

It is important to know how well our classifier performs. The performance of a
classifier is a compound characteristic, whose most important component is the
classification accuracy. If we were able to try the classifier on all possible input
objects, we would know exactly how accurate it is. Unfortunately, this is hardly a
possible scenario, so an estimate of the accuracy has to be used instead.

Classification error is a characteristic dual to the classification accuracy in that the
two values sum up to 1

Classification error = 1 − Classification accuracy.

The quantity of interest is called the generalization error. This is the expected error
of the trained classifier on unseen data drawn from the distribution of the problem.

1.3.1 Where Does the Error Come From? Bias and Variance

Why cannot we design the perfect classifier? Figure 1.11 shows a sketch of the
possible sources of error. Suppose that we have chosen the classifier model. Even
with a perfect training algorithm, our solution (marked as 1 in the figure) may be
away from the best solution with this model (marked as 2). This approximation error
comes from the fact that we have only a finite data set to train the classifier. Sometimes
the training algorithm is not guaranteed to arrive at the optimal classifier with the
given data. For example, the backpropagation training algorithm converges to a local
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4: The “real thing”

FIGURE 1.11 Composition of the generalization error.

minimum of the criterion function. If started from a different initialization point, the
solution may be different. In addition to the approximation error, there may be a
model error. Point 3 in the figure is the best possible solution in the given feature
space. This point may not be achievable with the current classifier model. Finally,
there is an irreducible part of the error, called the Bayes error. This error comes from
insufficient representation. With the available features, two objects with the same
feature values may have different class labels. Such a situation arose in Example 1.1.

Thus the true generalization error PG of a classifier D trained on a given data set
Z can be decomposed as

PG(D, Z) = PA(Z) + PM + PB, (1.7)

where PA(Z) is the approximation error, PM is the model error, and PB is the Bayes
error. The first term in the equation can be thought of as variance due to using different
training data or non-deterministic training algorithms. The second term, PM, can be
taken as the bias of the model from the best possible solution.

The difference between bias and variance is explained in Figure 1.12. We can
liken building the perfect classifier to shooting at a target. Suppose that our training
algorithm generates different solutions owing to different data samples, different
initialisations, or random branching of the training algorithm. If the solutions are
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 Target

Low bias, high variance

 Target
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FIGURE 1.12 Bias and variance.

grouped together, variance is low. Then the distance to the target will be more due to
the bias. Conversely, widely scattered solutions indicate large variance, and that can
account for the distance between the shot and the target.

1.3.2 Estimation of the Error

Assume that a labeled data set Zts of size Nts × n is available for testing the accuracy
of our classifier, D. The most natural way to calculate an estimate of the error is to
run D on all the objects in Zts and find the proportion of misclassified objects, called
sometimes the apparent error rate

P̂D =
Nerror

Nts
. (1.8)

Dual to this characteristic is the apparent classification accuracy which is calculated
by 1 − P̂D.

To look at the error from a probabilistic point of view, we can adopt the following
model. The classifier commits an error with probability PD on any object x ∈ R

n

(a wrong but useful assumption). Then the number of errors has a binomial distribution
with parameters (PD, Nts). An estimate of PD is P̂D. If Nts and PD satisfy the rule
of thumb: Nts > 30, P̂D × Nts > 5, and (1 − P̂D) × Nts > 5, the binomial distribution
can be approximated by a normal distribution. The 95% confidence interval for the
error is

⎡⎢⎢⎣ P̂D − 1.96

√
P̂D(1 − P̂D)

Nts
, P̂D + 1.96

√
P̂D(1 − P̂D)

Nts

⎤⎥⎥⎦ . (1.9)

By calculating the confidence interval we estimate how well this classifier (D) will
fare on unseen data from the same problem. Ideally, we will have a large representative
testing set, which will make the estimate precise.
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1.3.3 Confusion Matrices and Loss Matrices

To find out how the errors are distributed across the classes we construct a confusion
matrix using the testing data set, Zts. The entry aij of such a matrix denotes the
number of elements from Zts whose true class is 𝜔i, and which are assigned by D
to class 𝜔j. The estimate of the classification accuracy can be calculated as the trace
of the matrix divided by the total sum of the entries. The additional information that
the confusion matrix provides is where the misclassifications have occurred. This is
important for problems with a large number of classes where a high off-diagonal entry
of the matrix might indicate a difficult two-class problem that needs to be tackled
separately.

◻◼ Example 1.5 Confusion matrix for the Letter data
The Letters data set, available from the UCI Machine Learning Repository Database,
contains data extracted from 20,000 black-and-white images of capital English letters.
Sixteen numerical features describe each image (N = 20,000, c = 26, n = 16). For the
purpose of this illustration we used the hold-out method. The data set was randomly
split into halves. One half was used for training a linear classifier, and the other half
was used for testing. The labels of the testing data were matched to the labels obtained
from the classifier, and the 26 × 26 confusion matrix was constructed. If the classifier
was ideal, and all assigned and true labels were matched, the confusion matrix would
be diagonal.

Table 1.1 shows the row in the confusion matrix corresponding to class “H.”
The entries show the number of times that true “H” is mistaken for the letter in the
respective column. The boldface number is the diagonal entry showing how many
times “H” has been correctly recognized. Thus, from the total of 350 examples of “H”
in the testing set, only 159 have been labeled correctly by the classifier. Curiously,
the largest number of mistakes, 33, are for the letter “O.” Figure 1.13 visualizes
the confusion matrix for the letter data set. Darker color signifies a higher value.
The diagonal shows the darkest color, which indicates the high correct classification
rate (over 69%). Three common misclassifications are indicated with arrows in
the figure.

TABLE 1.1 The “H”-row in the Confusion Matrix for the Letter Data Set Obtained
from a Linear Classifier Trained on 10,000 Points

“H” labeled as: A B C D E F G H I J K L M

Times: 1 6 1 18 0 1 2 159 0 0 30 0 1

“H” labeled as: N O P Q R S T U V W X Y Z

Times: 27 33 2 9 21 0 0 11 4 3 20 1 0
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FIGURE 1.13 Graphical representation of the confusion matrix for the letter data set. Darker
color signifies a higher value.

The errors in classification are not equally costly. To account for the different costs
of mistakes, we introduce the loss matrix. We define a loss matrix with entries 𝜆i j
denoting the loss incurred by assigning label 𝜔i, given that the true label of the object
is 𝜔j. If the classifier is “unsure” about the label, it may refuse to make a decision.
An extra class called “refuse-to-decide” can be added to the set of classes. Choosing
the extra class should be less costly than choosing a wrong class. For a problem
with c original classes and a refuse option, the loss matrix is of size (c + 1) × c. Loss
matrices are usually specified by the user. A zero–one loss matrix is defined as 𝜆ij = 0
for i = j and 𝜆ij = 1 for i ≠ j; that is, all errors are equally costly.

1.3.4 Training and Testing Protocols

The estimate P̂D in Equation 1.8 is valid only for the given classifier D and the testing
set from which it was calculated. It is possible to train a better classifier from different
training data sampled from the distribution of the problem. What if we seek to answer
the question “How well can this classifier model solve the problem?”

Suppose that we have a data set Z of size N × n, containing n-dimensional feature
vectors describing N objects. We would like to use as much as possible of the data
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to build the classifier (training), and also as much as possible unseen data to test its
performance (testing). However, if we use all data for training and the same data for
testing, we might overtrain the classifier. It could learn perfectly the available data
but its performance on unseen data cannot be predicted. That is why it is important
to have a separate data set on which to examine the final product. The most widely
used training/testing protocols can be summarized as follows [216]:

� Resubstitution. Design classifier D on Z and test it on Z. P̂D is likely optimisti-
cally biased.

� Hold-out. Traditionally, split Z randomly into halves; use one half for training
and the other half for calculating P̂D. Splits in other proportions are also used.

� Repeated hold-out (Data shuffle). This is a version of the hold-out method where
we do L random splits of Z into training and testing parts and average all L
estimates of PD calculated on the respective testing parts. The usual proportions
are 90% for training and 10% for testing.

� Cross-validation. We choose an integer K (preferably a factor of N) and ran-
domly divide Z into K subsets of size N∕K. Then we use one subset to test the
performance of D trained on the union of the remaining K − 1 subsets. This
procedure is repeated K times choosing a different part for testing each time.

To get the final value of P̂D we average the K estimates.
To reduce the effect of the single split into K folds, we can carry out repeated

cross-validation. In an M × K-fold cross validation, the data is split M times into
K folds, and a cross-validation is performed on each such split. This procedure
results in M × K estimates of P̂D, whose average produces the desired estimate.
A 10 × 10-fold cross-validation is a typical choice of such a protocol.

� Leave-one-out. This is the cross-validation protocol where K = N, that is, one
object is left aside, the classifier is trained on the remaining N − 1 objects, and
the left out object is classified. P̂D is the proportion of the N objects misclassified
in their respective cross-validation fold.

� Bootstrap. This method is designed to correct for the optimistic bias of resubsti-
tution. This is done by randomly sampling with replacement L sets of cardinality
N from the original set Z. Approximately 37% (1∕e) of the data will not be
chosen in a bootstrap replica. This part of the data is called the “out-of-bag”
data. The classifier is built on the bootstrap replica and assessed on the out-
of-bag data (testing data). L such classifiers are trained, and the error rates on
the respective testing data are averaged. Sometimes the resubstitution and the
out-of-bag error rates are taken together with different weights [216].

Hold-out, repeated hold-out and cross-validation can be carried out with stratified
sampling. This means that the proportions of the classes are preserved as close as
possible in all folds.

Pattern recognition has now outgrown the stage where the computation resource
(or lack thereof) was the decisive factor as to which method to use. However, even
with the modern computing technology, the problem has not disappeared. The ever
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growing sizes of the data sets collected in different fields of science and practice pose
a new challenge. We are back to using the good old hold-out method, first because the
others might be too time-consuming, and second, because the amount of data might
be so excessive that small parts of it will suffice for training and testing. For example,
consider a data set obtained from retail analysis, which involves hundreds of thousands
of transactions. Using an estimate of the error over, say, 10,000 data points, can
conveniently shrink the confidence interval and make the estimate sufficiently reliable.

It is now becoming common practice to use three instead of two data sets: one for
training, one for validation, and one for testing. As before, the testing set remains
unseen during the training process. The validation data set acts as pseudo-testing. We
continue the training process until the performance improvement on the training set
is no longer matched by a performance improvement on the validation set. At this
point the training should be stopped so as to avoid overtraining. Not all data sets are
large enough to allow for a validation part to be cut out. Many of the data sets from
the UCI Machine Learning Repository Database2 [22], often used as benchmarks in
pattern recognition and machine learning, may be unsuitable for a three-way split
into training/validation/testing. The reason is that the data subsets will be too small
and the estimates of the error on these subsets would be unreliable. Then stopping the
training at the point suggested by the validation set might be inadequate, the estimate
of the testing accuracy might be inaccurate, and the classifier might be poor because
of the insufficient training data.

When multiple training and testing sessions are carried out, there is the question
of which of the classifiers built during this process we should use in the end. For
example, in a 10-fold cross-validation, we build 10 different classifiers using different
data subsets. The above methods are only meant to give us an estimate of the accuracy
of a certain model built for the problem at hand. We rely on the assumption that the
classification accuracy will change smoothly with the changes in the size of the
training data [99]. Therefore, if we are happy with the accuracy and its variability
across different training subsets, we should finally train a our chosen classifier on the
whole data set.

1.3.5 Overtraining and Peeking

Testing should be done on previously unseen data. All parameters should be tuned on
the training data. A common mistake in classification experiments is to select a feature
set using the given data, and then run experiments with one of the above protocols to
evaluate the accuracy of that set. This problem is widespread in bioinformatics and
neurosciences, aptly termed “peeking” [308, 346, 348, 370]. Using the same data is
likely to lead to an optimistic bias of the error.

◻◼ Example 1.6 Tuning a parameter on the testing set is wrong
Let D(r) be a classifier with a parameter r such that varying r leads to different training
accuracies. To demonstrate this effect, here we took a random training sample of

2http://www.ics.uci.edu/∼mlearn/MLRepository.html

http://www.ics.uci.edu/%E2%88%BCmlearn/MLRepository.html
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FIGURE 1.14 Example of overtraining: letter data set.

1000 objects from the letters data set. The remaining 19,000 objects were used for
testing. A quadratic discriminant classifier (QDC) was used.3 We vary a parameter
r, r ∈ [0, 1], called the regularization parameter, which determines to what extent we
sacrifice adjustment to the given data in favor of robustness. For r = 0 there is no
regularization; we have more accuracy on the training data and less certainty that
the classifier will perform well on unseen data. For r = 1, the classifier might be
less accurate on the training data but can be expected to perform at the same rate
on unseen data. This dilemma can be translated into everyday language as “specific
expertise” versus “common sense.” If the classifier is trained to expertly recognize
a certain data set, it might have this data-specific expertise and little common sense.
This will show as high testing error. Conversely, if the classifier is trained to have
good common sense, even if not overly successful on the training data, we might
expect it to have common sense with any data set drawn from the same distribution.

In the experiment, r was decreased for 20 steps, starting with r0 = 0.4 and taking
rk+1 to be 0.8 × rk. Figure 1.14 shows the training and the testing errors for the
20 steps.

This example is intended to demonstrate the overtraining phenomenon in the
process of varying a parameter, therefore we will look at the tendencies in the error
curves. While the training error decreases steadily with r, the testing error decreases
to a certain point, and then increases again. This increase indicates overtraining,
where the classifier becomes too much of a data-specific expert and loses common
sense. A common mistake in this case is to declare that the QDC has a testing error
of 21.37% (the minimum in the bottom plot). The mistake is in that the testing set
was used to find the best value of r.

3Discussed in Chapter 2.
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The problem of peeking, largely due to unawareness of its caveats, is alarmingly
common in application studies on feature selection. In view of this, we discuss this
issue further in Chapter 9.

1.4 EXPERIMENTAL COMPARISON OF CLASSIFIERS

There is no single “best” classifier. Classifiers applied to different problems and
trained by different algorithms perform differently [107,110,173,196]. Comparative
studies are usually based on extensive experiments using a number of simulated and
real data sets. When talking about experiment design, I cannot refrain from quoting
again and again a masterpiece of advice by George Nagy titled Candide’s practical
principles of experimental pattern recognition [287] (Just a note—this is a joke! DO
NOT DO THIS!)

� Comparison of classification accuracies. Comparisons against algorithms pro-
posed by others are distasteful and should be avoided. When this is not possible,
the following Theorem of Ethical Data Selection may prove useful.

� Theorem. There exists a set of data for which a candidate algorithm is superior
to any given rival algorithm. This set may be constructed by omitting from the
test set any pattern which is misclassified by the candidate algorithm.

� Replication of experiments. Since pattern recognition is a mature discipline, the
replication of experiments on new data by independent research groups, a fetish
in the physical and biological sciences, is unnecessary. Concentrate instead on
the accumulation of novel, universally applicable algorithms.

� Casey’s caution. Do not ever make your experimental data available to others;
someone may find an obvious solution that you missed.

Albeit meant to be satirical, the above principles are surprisingly widespread and
closely followed! Speaking seriously now, the rest of this section gives some practical
tips and recommendations.

A point raised by Duin [110] is that the performance of a classifier depends upon
the expertise and the willingness of the designer. There is not much to be done for
classifiers with fixed structures and training procedures (called “automatic” classifiers
in [110]). For classifiers with many training parameters however, we can make them
work or fail. Keeping in mind that there are no rules defining a fair comparison of
classifiers, here are a few (non-Candide’s) guidelines:

1. Pick the training procedures in advance and keep them fixed during training.
When publishing, give enough detail so that the experiment is reproducible by
other researchers.

2. Compare modified versions of classifiers with the original (nonmodified) clas-
sifier. For example, a distance-based modification of k-nearest neighbors (k-nn)
should be compared with the standard k-nn first, and then with other classifier
models. If a slight modification of a certain model is being compared with
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TABLE 1.2 The 2 × 2 Relationship Table with Counts

D2 correct (1) D2 wrong (0)

D1 correct (1) N11 N10

D1 wrong (0) N01 N00

Total, N11 + N10 + N01 + N00 = Nts

a totally different classifier, then it is not clear who deserves the credit—the
modification or the original model itself.

3. Make sure that all the information about the data is utilized by all classifiers to
the largest extent possible. For example, a clever initialization of a method can
make it favorite among a group of equivalent but randomly initialized methods.

4. Make sure that the testing set has not been seen at any stage of the training.

5. If possible, give also the complexity of the classifier: training and running
times, memory requirements, and so on.

1.4.1 Two Trained Classifiers and a Fixed Testing Set

Suppose that we have two trained classifiers which have been run on the same testing
data giving testing accuracies of 98% and 96%, respectively. Can we claim that the
first classifier is significantly better than the second one?

McNemar test. The testing results for two classifiers D1 and D2 on a testing set with
Nts objects can be organized as shown in Table 1.2. We consider two output values:
0 for incorrect classification and 1 for correct classification. Thus Npq is the number
of objects in the testing set with output p from the first classifier and output q from
the second classifier, p, q ∈ {0, 1}.

The null hypothesis H0 is that there is no difference between the accuracies of
the two classifiers. If the null hypothesis is correct, then the expected counts for
both off-diagonal entries in Table 1.2 are 1

2
(N01 + N10). The discrepancy between the

expected and the observed counts is measured by the following statistic:

s =
(|N01 − N10| − 1

)2
N01 + N10

, (1.10)

which is approximately distributed as 𝜒
2 with 1 degree of freedom. The “−1” in

the numerator is a continuity correction [99]. The simplest way to carry out the
test is to calculate s and compare it with the tabulated 𝜒

2 value for, say, level of
significance4

𝛼 = 0.05. If s > 3.841, we reject the null hypothesis and accept that the

4The level of significance of a statistical test is the probability of rejecting H0 when it is true, in other
words, the probability to “convict the innocent.” This error is called Type I error. The alternative error,
when we do not reject H0 when it is in fact incorrect, is called Type II error. The corresponding name for
it would be “free the guilty.” Both errors are needed in order to characterize a statistical test. For example,



EXPERIMENTAL COMPARISON OF CLASSIFIERS 21

two classifiers have significantly different accuracies. A MATLAB function for this
test, called mcnemar, is given in Appendix 1.A.2.

◻◼ Example 1.7 A comparison on the Iris data
We took the first two features of the Iris data (Example 1.2) and classes “versicolor”
and “virginica.” The data was split into 50% training and 50% testing parts. The testing
data is plotted in Figure 1.15. The linear and the quadratic discriminant classifiers

Sepal length
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FIGURE 1.15 Testing data from the Iris data set and the decision boundaries of the linear
and the quadratic discriminant classifiers.

(LDC and QDC, both detailed later) were trained on the training data. Their decision
boundaries are plotted in Figure 1.15.

The confusion matrices of the two classifiers are as follows:

LDC QDC
Versicolor Virginica Versicolor Virginica

Versicolor 20 5 Versicolor 20 5
Virginica 8 17 Virginica 14 11

Taking LDC to be classifier 1 and QDC, classifier 2, the values in Table 1.2 are as
follows: N11 = 31, N10 = 0, N01 = 6, and N00 = 13. The difference is due to the six
virginica objects in the “loop.” These are correctly labeled by QDC and mislabeled
by LDC. From Equation 1.10,

s = (|0 − 6| − 1)2

0 + 6
= 25

6
≈ 4.1667. (1.11)

if we always accept H0, there will be no Type I error at all. However, in this case the Type II error might
be large. Ideally, both errors should be small.
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Since the calculated s is greater than the tabulated value of 3.841, we reject the null
hypothesis and accept that LDC and QDC are significantly different. Note that the
Iris data is hardly large enough to be suitable for the hold-out protocol. It was used
here for the purpose of the illustration only.

1.4.2 Two Classifier Models and a Single Data Set

Dietterich [99] details four important sources of variation that have to be taken into
account when comparing classifier models.

1. The choice of the testing set. Different testing sets may rank differently clas-
sifiers which otherwise have the same accuracy across the whole population.
Therefore, it is dangerous to draw conclusions from a single testing experiment,
especially when the data size is small.

2. The choice of the training set. Some classifier models are called unstable [47]
because small changes in the training set can cause substantial changes of
the classifier trained on this set. Examples of unstable classifiers are decision
tree classifiers and some neural networks.5 Unstable classifiers are versatile
models which are capable of adapting, so that most or all training examples are
correctly classified. The instability of such classifiers is, in a way, the pay-off
for their versatility. As we shall see later, unstable classifiers play a major role
in classifier ensembles. Here we note that the variability with respect to the
training data has to be accounted for.

3. The internal randomness of the training algorithm. Some training algorithms
have a random component. This might be the initialization of the parameters
of the classifier which are then fine-tuned (e.g., the backpropagation algorithm
for training neural networks) or a stochastic procedure for tuning the classifier.
Thus the trained classifier might be different for the same training set and even
for the same initialization of the parameters.

4. The random classification error. Dietterich [99] considers the possibility of
having mislabeled objects in the testing data as the fourth source of variability.

The above list suggests that multiple training and testing sets should be used,
and multiple training runs should be carried out. Consider the task of comparing
two classifier models (methods) over the same data set using one of the multi-test
protocols. Let Ei, j be the error of classifier i, i ∈ {1, 2}, for the j-th testing set,
j = 1,… , K. We can apply the traditional paired t-test for comparing the errors where
E1, j are paired with E2, j. However, this test may be inadequate because it does not
take into account the fact that the training data used to build the classifier models are
dependent [12, 89, 99, 286]. For example, in a K-fold cross-validation experiment,
fold 1 will be used once for testing and K − 1 times for training the classifier. This
may lead to overly liberal outcome of the statistical test, allowing the discovery of
nonexisting significant differences between the two models. To avoid that, Nadeau
and Bengio propose an amendment to the calculation of the variance of the error
obtained as the average of T testing errors [286].

5All classifier models mentioned will be discussed later.
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In the paired t-test, we calculate the differences d1,… , dT , where dj = E1, j − E2, j
for all j, and check the hypothesis that the mean of these differences is 0. Let 𝜎d
be the empirical standard deviation of the differences. If the training data sets were
independent, the standard deviation of the mean difference would be 𝜎d′ =

𝜎d√
T

. To

account for the fact that the training data sets are not independent, we use instead

𝜎d′ = 𝜎d

√
1
T
+

Ntesting

Ntraining
, (1.12)

where Ntraining and Ntesting are the sizes of the training and the testing sets, respec-
tively. For a K-fold cross-validation,

𝜎d′ = 𝜎d

√
1
K

+ 1
K − 1

= 𝜎d

√
2K − 1

K(K − 1)
. (1.13)

This amendment holds for cross-validation, repeated cross-validation, data shuffle,
and the bootstrap methods.

◻◼ Example 1.8 Correction of the variance for multiple testing sets
This example presents a Monte Carlo simulation to illustrate the need for the variance
correction. Consider two Gaussian classes as shown in Figure 1.16. The classes have
means (−1, 0) and (1, 0), and identity covariance matrices. We generated 200 data
sets from this distribution; 20 points from class 1 and 20 points from class 2 in each
data set. An example of such a set is circled in Figure 1.16. With each data set, we
carried out 30 data shuffle runs by splitting the data into 90% training (36 data points)
and 10% testing (4 data points). The LDC (detailed later) was trained on the training
part and tested on the testing part.

FIGURE 1.16 Scatter plot of the two Gaussian classes. One of the 40-point data sets sampled
from these classes is marked with circles.

Let e1,… , e200 be the estimates of the classification error in the data shuffle
experiment. Value ei is the average of 30 testing errors with data set i (the data shuffle
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FIGURE 1.17 Histograms of the classification error for the two experiments.

protocol). Denote the mean and the standard deviation of these errors by 𝜇e and
𝜎e, respectively.

Consider now a matching experiment where we sample independently 200 × 30 =
6000 training sets of 36 objects and testing sets of 4 objects, storing the results as 200
batches of 30 runs. Denote the errors from the 200 batches by q1,… , q200. Denote the
mean and the standard deviation of these errors by𝜇q and 𝜎q, respectively. Figure 1.17
shows the histograms for e and q. While the means of both errors are about 15.9%
(the theoretical error), the spreads of the two histograms are different. In this example
we obtained 𝜎e = 0.0711 and 𝜎q = 0.0347.

For each data shuffle experiment, we calculated not only the error ei but also the
standard deviation si. If the training and testing data were independently drawn, the
standard error of the mean would be s̄i =

si√
30

. The average of s̄i across i would be

close to 𝜎e. However, this calculation gives a value of 0.0320, which is closer to 𝜎q
than to 𝜎e, and does not properly reflect the larger spread seen in the histogram. Now

we apply the correction and use s∗i = si

√
1
30

+ 1
9
. The average of s∗i across i is 0.0667,

which is much closer to the observed 𝜎e.

Consider two models A and B, and T estimates of the classification error obtained
through cross-validation or data shuffle. Denote these estimates by a1, a2,… , aT and
b1, b2,… , bT , respectively. The null hypothesis of the test, H0, is that there is no
difference between the mean errors of A and B for the given data set. The alternative
hypothesis, H1, is that there is difference. The step-by-step procedure for carrying
out the amended paired t-test (two-tailed) is as follows:

1. Calculate the differences di = ai − bi, i = 1,… , T . Calculate the mean and the
standard deviation of di

md = 1
T

T∑
i=1

di, sd =

√√√√ 1
T − 1

T∑
i=1

(di − md)2 .
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2. Calculate the amended standard error of the mean

s′d = sd

√
1
T
+

Ntesting

Ntraining
.

3. Calculate the test statistic td = md
s′d

and the degrees of freedom df = T − 1.

4. For a two-tailed t-test, find the p-value as

p = 2 Ft(−|td|, df),

where Ft is the Student’s t cumulative distribution function.

If we set the alternative hypothesis H1 to be “A has lower error than B” (one-tailed
test), the p-value should be calculated as

p = Ft(td, df).

Comparing the obtained p-value with the chosen level of significance 𝛼, we reject
H0 if p < 𝛼 and accept it otherwise. Function tvariance in Appendix 1.A.2 can be
used for this calculation.

◻◼ Example 1.9 Paired t-test with corrected variance
Suppose that the values of the error (in %) in a 10-fold cross-validation experiment
were as follows:

Model A: 7.4 18.1 13.7 17.5 13.0 12.5 8.9 12.1 12.4 7.4

Model B: 9.9 11.0 5.7 12.5 2.7 6.6 10.6 6.4 12.5 7.8

The mean of the difference between the errors of models A and B is m = 3.73
and the standard deviation is s = 4.5090. The standard error of the mean is therefore
s̄ = s∕

√
10 ≈ 1.4259. The p-value for the (traditional) two-tailed paired t-test (10−

1 = 9 degrees of freedom) is

p = 2 × Ft

(
− |m|

s̄
, df

)
= 2 × Ft

(
− 3.73

1.4259
, 9
)
≈ 0.0280 .

According to this test, at 𝛼 = 0.05, we can accept the alternative hypothesis that
there is significant difference between the two classifier models. Knowing that the
training and testing data were not independent, the amended standard deviation is

s̄′ = s

(√
1
10

+ 1
9

)
≈ 2.0717. The corrected p-value is

p′ = 2 × Ft

(
− |m|

s̄′
, df

)
= 2 × Ft

(
− 3.73

2.0717
, 9
)
≈ 0.1053.

This result does not give us ground to reject the null hypothesis and declare that there
is difference between the two means.

The two examples highlight the importance of the variance correction when the
training and testing data are dependent.
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1.4.3 Two Classifier Models and Multiple Data Sets

Over the years, researchers have developed affinity for using extensively the UCI
Machine Learning Repository [22] for drawing a sample of data sets and running
comparative experiments on these [347]. We tend to over-tune our classification
algorithms to these data sets and may ignore in the process data sets that present a
real-life challenge [347]. If the claim is that algorithm A is better than algorithm B in
general, then a large and diverse collection of data sets should be used.

The Wilcoxon signed rank test. Demšar proposes that the data sets chosen for the
comparison of models A and B may be thought of as independent trials, but dissuades
the reader from using a paired t-test [89]. The classification errors of different data
sets are hardly commensurable. To bypass this problem, the Wilcoxon signed rank test
was deemed more suitable. Let a1, a2,… , aN and b1, b2,… , bN in this context denote
the error estimates of models A and B for the N data sets chosen for the experiment.
These estimates can be obtained through any of the protocols, for example a 10-fold
cross-validation. Again let di = ai − bi, i = 1,… , N be the differences of the errors.
The Wilcoxon signed rank test does not take into account the exact value of di,
only its relative magnitude. The null hypothesis of the test is that the data in vector
di come from a continuous, symmetric distribution with zero median, against the
alternative that the distribution does not have zero median. The test is applied in the
following steps:6

1. Rank the absolute values of the distances |di| so that the smallest distance
receives rank 1 and the largest distance receives rank N. If there is a tie, all
the ranks are shared so that the total sum stays 1 + 2 +⋯ + N. For example,
if there are four equal smallest distances, each will be assigned rank (1 + 2 +
3 + 4)∕4 = 2.5. Thus each data set receives a rank ri.

2. Split the ranks into positive and negative depending on the sign of di and
calculate the sums:

R+ =
∑
di>0

ri +
1
2

∑
di=0

ri, R− =
∑
di<0

ri +
1
2

∑
di=0

ri.

3. Take as the test statistic T = min(R+, R−) and compare it with the critical value
for the respective number of data sets N and the chosen level of significance.
Table 1.A.1(a) in Appendix 1.A.2 gives the critical values for this test for
6 ≤ N ≤ 25. For values N > 25, the following statistic is approximately nor-
mally distributed [89]:

z =
T − 1

4
N(N + 1)√

1
24

N(N + 1)(2N + 1)
.

6Function signrank from the Statistics Toolbox of MATLAB can be used to calculate the p-value for
this test.
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The sign test. A simpler but less powerful alternative to this test is the sign test. This
time we do not take into account the magnitude of the differences, only their sign. By
doing so, we further avoid the problem of noncommensurable errors or differences
thereof. For example, an error difference of 2% for a given data set may be more
relevant than a difference of 4% on another data set. It is common practice to count
WINS, DRAWS, and LOSSES, with or without statistical significance attached to
these. The sign test is based on the intuition that if models A and B are equivalent, each
one will score better than the other on approximately N∕2 of the N data sets. Demšar
[89] gives a useful table for checking the significance of the difference between
models A and B tested on N data sets based on the sign test. We reproduce the table
(with a small correction) as Table 1.A.1(b) and explain the calculation of the critical
values in Appendix 1.A.2.

The table contains the required number of wins of A over B in order to reject H0
and claim that model A is better than model B. The ties are split equally between A
and B. For N > 25 data sets, we can use the normal approximation of the binomial
distribution (mean N∕2 and standard deviation

√
N∕2). If the number of wins for A is

greater than N∕2 + 1.96
√

N∕2, A is significantly better than B at 𝛼 = 0.05 (see [89]
for more details).

1.4.4 Multiple Classifier Models and Multiple Data Sets

Demšar [89] recommends the Friedman test followed by the pairwise Nemenyi test
for this task.

Friedman test with Iman and Davenport amendment. This is a nonparametric
alternative of the analysis-of-variance (ANOVA) test. The classifier models are ranked
on each of the N data sets. The best classifier receives rank 1 and the worst receives
rank N. Tied ranks are shared equally as explained above. Let rj

i be the rank of classifier
model j on data set i, where i = 1,… , N and j = 1,… , M. Let Rj =

1
N

∑N
i=1 rj

i be the
average rank of model j. The test statistic is

x2
F = 12N

M(M + 1)

(
M∑

j=1

R2
j −

M(M + 1)2

4

)
. (1.14)

The null hypothesis of the test H0 is that all classifier models are equivalent. Under
the null hypothesis, x2

F follows the 𝜒
2 distribution with M − 1 degrees of freedom

(for N > 10 and M > 5 [89]).7 Demšar advocates an amendment of the test statistic
proposed by Iman and Davenport:

FF =
(N − 1)x2

F

N(M − 1) − x2
F

, (1.15)

7Function friedman from the Statistics Toolbox of MATLAB can be used to calculate the p-value
for this test. Note that the MATLAB implementation contains an additional correction for tied ranks.
This gives a slightly different test statistic compared to Equation 1.14 if there are tied ranks. See
http://www.unistat.com/.

http://www.unistat.com/
http://www.unistat.com/
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which follows the F-distribution with (M − 1) and (M − 1)(N − 1) degrees of free-
dom. The statistic’s value is compared with the tabled critical values for the
F-distribution (available in standard statistics textbooks), and if FF is larger, we
reject H0 and accept that there is difference between the classifier models. Instead
of using pre-tabulated critical values, a MATLAB function imandavenport for
calculating the p-value of this test is given in Appendix 1.A.2.

◻◼ Example 1.10 Comparison of 11 classifier models on 20 data sets
This is a fictional example which demonstrates the calculation of the test statistic for
the Friedman test and its modification. Table 1.3 displays the classification errors of
the 11 classifier models for the 20 data sets. The data sets were arbitrarily named,
just for fun, as the first 20 chemical elements of the periodic table. The “classification
errors” were generated independently, as the absolute values of a normally distributed
random variable with mean 0 and standard deviation 10, subsequently rounded to
one decimal place. Thus, we do not expect to find significant differences between
the models.

The corresponding ranks are shown in Table 1.4. Notice the shared ranks: both
models C6 and C11 have the minimum error rate of 0.1 for data set “Nitrogen”
and therefore equally share ranks 1 and 2, both models receiving rank 1.5. The
average ranks are given in the bottom row. The Friedman statistic calculated as in

TABLE 1.3 Classification Errors of 11 Classifier Models on 20 Data Sets (A Fictional
Example)

Data set C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Hydrogen 4.1 14.1 5.8 2.3 22.5 1.4 21.8 8.0 9.1 15.5 5.4
Helium 5.0 1.4 6.2 2.6 11.7 6.7 12.0 4.7 2.4 8.7 5.6
Lithium 0.8 12.9 5.4 9.0 12.0 8.5 3.7 0.5 6.5 1.5 19.8
Beryllium 1.6 4.9 4.8 21.6 6.6 0.6 24.1 3.5 12.7 3.9 5.4
Boron 5.3 6.2 1.1 0.9 3.3 2.9 7.4 12.6 5.5 13.2 1.4
Carbon 7.2 9.3 3.4 9.5 15.1 6.1 3.1 10.4 0.9 8.0 6.2
Nitrogen 8.5 2.8 9.3 11.7 8.9 0.1 5.4 4.3 3.5 1.4 0.1
Oxygen 8.0 2.0 0.1 17.4 9.6 4.1 1.2 0.8 9.9 4.2 11.1
Fluorine 7.3 1.4 11.4 3.7 4.9 9.4 9.6 17.9 4.3 8.2 1.9
Neon 16.9 8.8 4.3 11.9 4.4 8.4 2.5 8.0 10.0 8.5 11.2
Sodium 3.9 0.8 1.8 9.5 2.0 10.9 18.9 4.4 6.3 3.6 2.5
Magnesium 5.1 6.0 6.6 14.2 9.8 3.2 12.2 6.3 10.5 27.5 15.6
Aluminum 4.1 3.7 5.8 0.3 15.7 0.2 3.8 15.3 5.1 15.1 12.0
Silicon 10.7 8.4 16.2 2.6 3.7 11.6 0.5 27.3 3.3 4.3 2.4
Phosphorus 9.7 2.8 0.2 5.2 2.2 4.9 19.5 1.7 16.4 2.3 10.0
Sulfur 2.7 35.7 4.3 6.8 5.4 12.2 5.7 4.8 19.1 8.3 19.2
Chlorine 6.3 34.1 20.3 6.7 2.6 15.9 0.8 14.1 0.4 8.3 6.3
Argon 6.3 11.5 13.3 6.8 11.0 5.3 0.8 9.7 7.0 5.0 7.5
Potassium 0.8 7.9 3.2 3.1 5.5 2.6 7.9 2.9 1.7 23.2 2.1
Calcium 13.8 12.8 8.3 3.8 21.7 3.9 10.4 11.7 15.4 7.9 7.7
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TABLE 1.4 Ranks of the 11 Classifier Models on the 20 Data Sets (Fictional Example)

Data set C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Hydrogen 3.0 8.0 5.0 2.0 11.0 1.0 10.0 6.0 7.0 9.0 4.0
Helium 5.0 1.0 7.0 3.0 10.0 8.0 11.0 4.0 2.0 9.0 6.0
Lithium 2.0 10.0 5.0 8.0 9.0 7.0 4.0 1.0 6.0 3.0 11.0
Beryllium 2.0 6.0 5.0 10.0 8.0 1.0 11.0 3.0 9.0 4.0 7.0
Boron 6.0 8.0 2.0 1.0 5.0 4.0 9.0 10.0 7.0 11.0 3.0
Carbon 6.0 8.0 3.0 9.0 11.0 4.0 2.0 10.0 1.0 7.0 5.0
Nitrogen 8.0 4.0 10.0 11.0 9.0 1.5 7.0 6.0 5.0 3.0 1.5
Oxygen 7.0 4.0 1.0 11.0 8.0 5.0 3.0 2.0 9.0 6.0 10.0
Fluorine 6.0 1.0 10.0 3.0 5.0 8.0 9.0 11.0 4.0 7.0 2.0
Neon 11.0 7.0 2.0 10.0 3.0 5.0 1.0 4.0 8.0 6.0 9.0
Sodium 6.0 1.0 2.0 9.0 3.0 10.0 11.0 7.0 8.0 5.0 4.0
Magnesium 2.0 3.0 5.0 9.0 6.0 1.0 8.0 4.0 7.0 11.0 10.0
Aluminum 5.0 3.0 7.0 2.0 11.0 1.0 4.0 10.0 6.0 9.0 8.0
Silicon 8.0 7.0 10.0 3.0 5.0 9.0 1.0 11.0 4.0 6.0 2.0
Phosphorus 8.0 5.0 1.0 7.0 3.0 6.0 11.0 2.0 10.0 4.0 9.0
Sulfur 1.0 11.0 2.0 6.0 4.0 8.0 5.0 3.0 9.0 7.0 10.0
Chlorine 4.5 11.0 10.0 6.0 3.0 9.0 2.0 8.0 1.0 7.0 4.5
Argon 4.0 10.0 11.0 5.0 9.0 3.0 1.0 8.0 6.0 2.0 7.0
Potassium 1.0 9.5 7.0 6.0 8.0 4.0 9.5 5.0 2.0 11.0 3.0
Calcium 9.0 8.0 5.0 1.0 11.0 2.0 6.0 7.0 10.0 4.0 3.0

Rj 5.22 6.28 5.50 6.10 7.10 4.88 6.28 6.10 6.05 6.55 5.95

Equation 1.14 is 6.9182. The p-value for the 𝜒2 distribution with M − 1 = 10 degrees
of freedom is 0.7331. This value supports H0: equal classifier models.

Applying the amendment from Equation 1.15, we arrive at FF = 0.6808. The
p-value of the F-test with (M − 1) and (M − 1)(N − 1) degrees of freedom is 0.7415,
again supporting H0.

The post-hoc test. If H0 is rejected, Demšar [89] proposes the use of Nemenyi
post-hoc test to find exactly where the differences are. All pairs of classifiers are
examined. Two classifiers are declared different if their average ranks differ by more
than a given critical value. For instance, for a pair of classifiers i and j, a test statistic
is calculated using the average ranks Ri and Rj:

z =
Ri − Rj√

M(M+1)
6N

. (1.16)

The number of pairwise comparisons M(M − 1)∕2 determines the level of significance
for this z-value. If the desired level of significance is 𝛼, the difference will be flagged
as significant if the obtained p-value is smaller than 2𝛼

M(M−1)
. When a classifier model

is singled out and compared with the remaining M − 1 models, the scaling constant
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is just (M − 1) (Bonferroni-Dunn correction of the family-wise error). Garcı́a and
Herrera [147] explain in detail further step-wise procedures for post-hoc comparing
of pairs of classifiers. The MATLAB code for both Nemenyi and Bonferroni-Dunn
post-hoc tests is given in Appendix 1.A.2.

◻◼ Example 1.11 Post-hoc tests
The fictional comparison example was slightly modified. A constant of 0.8 was
subtracted from the first column of Table 1.3, and all values in this column were
multiplied by 0.5. This made classifier C1 better than all other classifier models. The
ranks changed correspondingly, leading to the following average ranks:

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Rj 3.10 6.47 5.65 6.35 7.25 5.28 6.42 6.30 6.20 6.80 6.17

Nemenyi ■ ■

Bonferroni ■ ■ ■ ■ ■ ■ ■ ■

The Friedman test statistic is 21.7273, giving a p-value of 0.0166. The Iman and
Davenport amendment gives FF = 2.3157 and a p-value of 0.0136. According to both
tests, there is a difference among the 11 classifier models. The Nemenyi post-hoc test
found significant differences at 𝛼 < 0.05 between C1 and C5 and also between C1
and C10 (two-tailed test). Nominating C1 as the classifier of interest, the Bonferroni–
Dunn post-hoc test found C1 to be better (smaller error) than all classifiers except C3
and C6 (one-tailed test). The results from the post-hoc tests are shown underneath the
average ranks above. A black square indicates that significant difference was found
at 𝛼 < 0.05.

1.5 BAYES DECISION THEORY

1.5.1 Probabilistic Framework

Although many types of uncertainty exist, the probabilistic model fits surprisingly
well in most pattern recognition problems. We assume that the class label 𝜔 is a
random variable taking values in the set Ω = {𝜔1,… ,𝜔c}. The prior probabilities,
P(𝜔i), i = 1,… , c, constitute the probability mass function (pmf) of the variable 𝜔:

0 ≤ P(𝜔i) ≤ 1, and
c∑

i=1

P(𝜔i) = 1. (1.17)

We can construct a classifier based on this information only. To make the smallest
possible number of mislabelings, we should always label an object with the class of
the highest prior probability.

However, by measuring the relevant characteristics of the objects organized as
the vector x ∈ R

n, we should be able to make a more accurate decision about this
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particular object. Assume that the objects from class𝜔i are distributed in R
n according

to the class-conditional pdf p(x|𝜔i), where p(x|𝜔i) ≥ 0, ∀x ∈ R
n, and

∫R
n

p(x|𝜔i) dx = 1, i = 1,… , c. (1.18)

The likelihood of x ∈ R
n is given by the unconditional pdf:

p(x) =
c∑

i=1

P(𝜔i) p(x|𝜔i). (1.19)

Given the prior probabilities and the class-conditional pdfs, we can calculate the
posterior probability that the true class label of the measured x is 𝜔i using the Bayes
formula

P(𝜔i|x) =
P(𝜔i) p(x|𝜔i)

p(x)
=

P(𝜔i) p(x|𝜔i)∑c
j=1 P(𝜔j) p(x|𝜔j)

. (1.20)

Equation 1.20 gives the probability mass function of the class label variable 𝜔

for the observed x. The classification decision for that particular x should be made
with respect to the posterior probability. Choosing the class with the highest posterior
probability will lead to the smallest possible error when classifying any object with
feature vector x.

The probability model described above is valid for the discrete case as well. Let x
be a discrete variable with possible values in V = {v1,… , vs}. The only difference
from the continuous-valued case is that instead of class-conditional pdf, we use class-
conditional pmf, P(x|𝜔i), giving the probability that a particular value from V occurs
if we draw at random an object from class 𝜔i. For all pmfs,

0 ≤ P(x|𝜔i) ≤ 1, ∀x ∈ V, and
s∑

j=1

P(vj|𝜔i) = 1. (1.21)

1.5.2 Discriminant Functions and Decision Boundaries

The posterior probabilities can be used directly as the discriminant functions, that is,

gi(x) = P(𝜔i|x), i = 1,… , c. (1.22)

Hence we can rewrite the maximum membership rule as

D(x) = 𝜔i∗ ∈ Ω ⟺ P(𝜔i∗ |x) = max
i=1,…,c

{P(𝜔i|x)}. (1.23)

In fact, a set of discriminant functions leading to the same classification regions
would be

gi(x) = P(𝜔i) p(x|𝜔i), i = 1,… , c, (1.24)
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because the denominator of Equation 1.20 is the same for all i, and so will not change
the ranking order of gis. Another useful set of discriminant functions derived from
the posterior probabilities is

gi(x) = log(P(𝜔i) p(x|𝜔i)), i = 1,… , c. (1.25)

◻◼ Example 1.12 Decision/classification boundaries
Let x ∈ R. Figure 1.18 shows two sets of discriminant functions for three normally
distributed classes with

P(𝜔1) = 0.45, p(x|𝜔1) ∼ N
(
4, (2.0)2

)
P(𝜔2) = 0.35, p(x|𝜔2) ∼ N

(
5, (1.2)2

)
P(𝜔3) = 0.20, p(x|𝜔3) ∼ N

(
7, (1.0)2

)
.

Figure 1.18a depicts the first set of discriminant functions (Equation 1.24),
obtained as P(𝜔i) p(x|𝜔i), i = 1, 2, 3. The classification boundaries are marked with
bullets on the x-axis. The posterior probabilities (Equation 1.22) are depicted as the
second set of discriminant functions in Figure 1.18b. The classification regions speci-
fied by the boundaries are displayed with different shades of gray. Note that the same
regions are found for both sets of discriminant functions.
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FIGURE 1.18 Plot of two equivalent sets of discriminant functions: (a) P(𝜔1)p(x|𝜔1) (the
thin line), P(𝜔2)p(x|𝜔2) (the dashed line), and P(𝜔3)p(x|𝜔3) (the thick line); (b) P(𝜔1|x) (the
thin line), P(𝜔2|x) (the dashed line), and P(𝜔3|x) (the thick line).
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Sometimes more than two discriminant functions might tie at the boundaries. Ties
are resolved randomly.

1.5.3 Bayes Error

Let D∗ be a classifier which always assigns the class label with the largest posterior
probability. Since for every x we can only be correct with probability

P(𝜔i∗ |x) = max
i=1,…,c

{P(𝜔i|x)}, (1.26)

there is some inevitable error. The overall probability of error of D∗ is the sum of the
errors of each individual x weighted by its likelihood value, p(x), that is,

Pe(D∗) =
∫R

n
(1 − P(𝜔i∗ |x))p(x) dx. (1.27)

It is convenient to split the integral into c integrals, one on each classification
region. In this case, x will be given label 𝜔i∗ corresponding to the region’s tag where
x belongs. Then

Pe(D∗) =
c∑

i=1
∫
∗

i

(1 − P(𝜔i|x))p(x) dx, (1.28)

where ∗
i is the classification region for class 𝜔i, 

∗
i ∩∗

j = ∅ for any j ≠ i and
∪c

i=1
∗
i = R

n. Substituting Equation 1.20 into Equation 1.28 and taking into account
that
∑c

i=1 ∫∗
i
= ∫

R
n ,

Pe(D∗) =
c∑

i=1
∫
∗

i

(
1 −

P(𝜔i)p(x|𝜔i)

p(x)

)
p(x) dx (1.29)

=
∫R

n
p(x) dx −

c∑
i=1

∫
∗

i

P(𝜔i)p(x|𝜔i) dx (1.30)

= 1 −
c∑

i=1
∫
∗

i

P(𝜔i)p(x|𝜔i) dx. (1.31)

Note that Pe(D∗) = 1 − Pc(D∗), where Pc(D∗) is the overall probability of correct
classification of D∗, or the classification accuracy.

Consider a different classifier, D, which produces classification regions 1,… ,
c, i ∩j = ∅ for any j ≠ i and ∪c

i=1i = R
n. Regardless of the way the regions

are formed, the error of D is

Pe(D) =
c∑

i=1
∫
i

(1 − P(𝜔i|x))p(x) dx . (1.32)

The error of D∗ is the smallest possible error, called the Bayes error. The example
below illustrates this concept.
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◻◼ Example 1.13 Bayes error
Consider the simple case of x ∈ R and Ω = {𝜔1,𝜔2}. Figure 1.19 displays the dis-
criminant functions in the form gi(x) = P(𝜔i)p(x|𝜔i), i = 1, 2, x ∈ [0, 10].
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Optimal
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‘Real’
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FIGURE 1.19 Plot of two discriminant functions P(𝜔1)p(x|𝜔1) (left curve) and P(𝜔2)p(x|𝜔2)
(right curve) for x ∈ [0, 10]. The light-gray area corresponds to the Bayes error, incurred if
the optimal decision boundary (denoted by ∙) is used. The dark-gray area corresponds to the
additional error when another boundary (denoted by ◦) is used.

For two classes,

P(𝜔1|x) = 1 − P(𝜔2|x), (1.33)

and Pe(D∗) in Equation 1.28 becomes

Pe(D∗) =
∫
∗

1

(1 − P(𝜔1|x))p(x) dx +
∫
∗

2

(1 − P(𝜔2|x))p(x) dx (1.34)

=
∫
∗

1

P(𝜔2|x)p(x) dx +
∫
∗

2

P(𝜔1|x)p(x) dx (1.35)

=
∫∗

1

P(𝜔2)p(x|𝜔2) dx +
∫
∗

2

P(𝜔1)p(x|𝜔1) dx. (1.36)

By design, the classification regions of D∗ correspond to the true highest posterior
probabilities. The bullet on the x-axis in Figure 1.19 splits R into ∗

1 (to the left)
and ∗

2 (to the right). According to Equation 1.36, the Bayes error will be the
area under P(𝜔2)p(x|𝜔2) in ∗

1 plus the area under P(𝜔1)p(x|𝜔1) in ∗
2. The total

area corresponding to the Bayes error is marked in light gray. If the boundary is
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shifted to the left or right, additional error will be incurred. We can think of this
boundary as coming from classifier D which is an imperfect approximation of D∗.
The shifted boundary, depicted by an open circle, is called in this example the “real”
boundary. Region 1 is therefore ∗

1 extended to the right. The error calculated
through Equation 1.36 is the area under P(𝜔2)p(x|𝜔2) in the whole of 1, and extra
error will be incurred, measured by the area shaded in dark gray. Therefore, using the
true posterior probabilities or an equivalent set of discriminant functions guarantees
the smallest possible error rate, called the Bayes error.

Since the true probabilities are never available in practice, it is impossible to calculate
the exact Bayes error or design the perfect Bayes classifier. Even if the probabilities
were given, it will be difficult to find the classification regions in R

n and calculate
the integrals. Therefore, we rely on estimates of the error as discussed in Section 1.3.

1.6 CLUSTERING AND FEATURE SELECTION

Pattern recognition developed historically as a union of three distinct but intrinsically
related components: classification, clustering, and feature selection.

1.6.1 Clustering

Clustering aims to find groups in data. “Cluster” is an intuitive concept and does not
have a mathematically rigorous definition. The members of one cluster should be
similar to one another and dissimilar to the members of other clusters. A clustering
algorithm operates on an unlabeled data set Z and produces a partition on it, denoted
P = (Z(1),… , Z(c)), where Z(i)

⊆ Z and

Z(i) ∩ Z(j) = ∅, i, j = 1,… , c, i ≠ j, (1.37)
c⋃

i=1

Z(i) = Z. (1.38)

There is a vast amount of literature on clustering [18, 38, 126, 158, 195] looking
for answers to the main questions, among which are:

� Is there really a structure in the data or are we imposing one by our clustering
algorithms?

� How many clusters should we be looking for?
� How do we define similarity between objects in the feature space?
� How do we know whether our clustering results are good?

Two main groups of clustering algorithms are hierarchical clustering (agglom-
erative and divisive) and nonhierarchical clustering. The nearest neighbor (single
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SINGLE LINKAGE CLUSTERING

1. Pick the number of clusters c and a similarity measure (a, b) between two objects
a and b. Initialize the procedure by defining an individual cluster for each point in Z.

2. Identify the two most similar clusters and join them as a new cluster, replacing the
initial two clusters. The similarity between clusters A and B is measured as

min
a∈A,b∈B

(a, b).

3. Repeat step 2 until c clusters are found.

FIGURE 1.20 The single linkage clustering algorithm.

c-MEANS CLUSTERING

1. Pick the number of clusters c and a similarity measure (a, b) between two objects a
and b. Initialize the c cluster centers (i.e., by randomly selecting c points from Z to be
these centers).

2. Label all points in Z with respect to their similarity to the cluster centers: each point is
assigned to the cluster with the most similar center.

3. Calculate the new cluster centers using the points in the respective cluster.
4. Repeat steps 2 and 3 until no change in the centers occurs.

FIGURE 1.21 The c-means (k-means) clustering algorithm.

linkage) clustering algorithm shown in Figure 1.20 is an example of the hierarchical
group whereas the c-means clustering algorithm (also called k-means) shown in Fig-
ure 1.21 is an example of the nonhierarchical group. Both algorithms are famous for
their simplicity and elegance.8

◻◼ Example 1.14 Clustering: there is no “best” algorithm
Consider a two-dimensional data set where 50 points are sampled from each of
two normal distributions with means at (0,0) and (3,3), and identity covariance
matrices (Figure 1.22a). The single linkage clustering algorithm is known for the
“chain effect.” An outlier would often present itself as a separate cluster, thereby
preventing the algorithm from discovering meaningful balanced clusters. This is
illustrated in Figure 1.22b where the two clusters found by the algorithm are plotted
with different markers. The c-means algorithm, on the other hand, identifies the two
clusters successfully (Figure 1.22c).

8Both single-linkage and c-means algorithms are available in many statistical software packages, including
the Statistics Toolbox of MATLAB.
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(a) Data (b) Single-linkage

Two string-type clusters

(c) c-means

(d) Data (e) Single-linkage (f) k-means

Two Gaussians

FIGURE 1.22 Examples of single linkage and k-means clustering on two synthetic data sets.
The two clusters found by the algorithms are plotted with different markers: circles and gray
crosses.

The second data set (Figure 1.22d) consists of two string-shaped clusters. This
configuration is correctly identified by the single linkage but fools k-means into
cutting both strings and finding nonexistent clusters.

Neither of the two algorithms is perfect, nor are the multitude of existing clustering
algorithms. It may prove difficult to pick a suitable clustering algorithm for multi-
dimensional data. Ensembles of “clusterers” are deemed to be more robust in that
respect.

1.6.2 Feature Selection

Feature selection is the process of reducing the dimensionality of the feature space.
Its aim is not only computational convenience but elimination of noise in the data so
that it is easier to train an accurate and robust classifier. A myriad of insightful and
comprehensive surveys, practitioners’ guides, journal special issues, and conference
tracks have been devoted to feature selection over the years [3, 42, 83, 164, 196, 214,
263,284,346]. Different methods and approaches have been recommended depending
on the data types and sizes.
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The two major questions that a feature selection method must address, separately
or simultaneously, are:

1. Are the features evaluated individually? If not, how do we traverse the class of
all subset-candidates?

2. What criterion do we apply to evaluate the merit of a given subset of features?

Consider for now question 1. The simplest way of selecting features is to rank them
according to a certain test criterion and cut the list. Starting with key publications
in the 1970s [77, 387], it is now well understood that features should be evaluated
as a group rather than individually. By selecting the features individually, important
dependencies may be overlooked. But evaluating subsets of features raises the ques-
tion of computational complexity. If unlimited resources were available, exhaustive
search could be carried out checking each and every possible subset. Sequential
methods such as forward and backward selection, as well as floating search [315]
have been found to be the best compromise between computation speed and accuracy.
Figure 1.23 shows the sequential forward selection algorithm (SFS).

The output of SFS can be taken as the feature ranking determined by the order in
which the features enter the set S in the algorithm.

The two basic approaches to question 2 are termed “wrapper” and “filter” [214].
The wrapper approach requires that a classifier model is chosen and trained on a given
feature set. Its classification accuracy, evaluated on a validation set, is the measure
of quality of that feature set. In the filter approach, some measure of separation
between the classes in the space spanned by the feature set is used as a proxy for the
classification accuracy. While the wrapper approach has been found to be generally
more accurate, the filter approach is faster and easier to apply, which makes it a
convenient compromise if a large number of feature subsets must be probed.

The MATLAB function sfs_filter(a,laba,d) in Appendix 1.A.3 carries out
sequential forward selection of the features of data set a (columns of a) and returns
the indices of the d features in order of selection. The criterion for evaluating the
feature subset f is the Euclidean distance between the centroids of the classes in the
space spanned by f but there are many alternatives offered by the pdist MATLAB
function used within the code.

SEQUENTIAL FORWARD SELECTION (SFS)

1. Given is a feature set F. Choose a test criterion for a feature subset f ⊆ F and a
stopping criterion (e.g., a number of features d ≤ |F|). Initialize the set of selected
features S = ∅.

2. Taking all features in F that are not yet in S, add temporarily one feature at a time and
measure the quality of the new set S′ = S ∪ {x}, x ∈ F, x ∉ S.

3. Choose the feature with the highest criterion value and add it permanently to S.
4. Repeat steps 2 and 3 until the stopping criterion is met.

FIGURE 1.23 The sequential forward selection algorithm.
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◻◼ Example 1.15 Feature selection: the peak effect
The data set “sonar” from the UCI ML Repository has 60 features and 2 classes.
SFS was applied for feature selection with a filter approach. The quality of a feature
subset was measured by the Euclidean distance between the two class centroids in
the respective feature space (as in the MATLAB function sfs_ filter(a,laba,d)
in Appendix 1.A.3). One hundred runs were carried out where a randomly sampled
half of the data set was used for training and the other half, for testing. The nearest
neighbor classifier was applied for evaluating the selected feature subsets. Each split
of the data produced a ranking of the 60 features. As an example, suppose that SFS
on split j arranged the features as {32, 11, 6, 28,…}. For this split, feature 32 was the
single best, {32, 11} was the best pair containing feature 32, {32, 11, 6} was the best
set of three features containing features 32 and 11, and so on.

Consider plotting the classification accuracy, evaluated on the testing half of the
data, when using feature sets {32}, {32, 11}, {32, 11, 6}, {32, 11, 6, 28}, and so
on. It can be expected that the more features we include, the higher the accuracy
will be, leading to the best accuracy with all features. The curves for the 100 data
splits are shown in Figure 1.24 in gray. The average curve is depicted with a solid
black line. The peak and the end points are marked and annotated. It can be seen
that SFS reaches better accuracy with fewer features, called the “peak effect.” For
comparison, 100 random permutations of the features were generated, and an average
curve was calculated in the same way as with the SFS rankings. As expected, the
average random curve progresses gradually toward the same end point but without the
peak effect.
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FIGURE 1.24 Illustration of the peak effect in feature selection on the “sonar” data, SFS
filter and the nearest neighbor classifier.
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This example demonstrates that feature selection could be beneficial not just for
reducing computational complexity but also for increasing the classification accuracy.
This problem is especially acute for very high-dimensional data where the number of
features exceeds by orders of magnitude the number of samples, the so-called “wide”
data sets.

The long-lasting and proliferate research on feature selection has delivered a
refined collection of excellent feature selection algorithms such as the floating search
[315], fast correlation-based filters (FCBF) [428], RELIEF [205], and SVM-RFE
[165]. Yet, with the new challenges posed by the very high dimensionality of modern
data, there is room for development. Saeys et al. [346] highlight the potential of
ensemble feature selection methods to improve the stability and accuracy of the
individual methods. We will touch upon feature selection for ensembles and by
ensembles further in the book.

1.7 CHALLENGES OF REAL-LIFE DATA

Finally, pattern recognition branched out tremendously in the past couple of decades,
taking what were curious little niches in the past into powerful independent research
streams in their own right. Real-life data pose challenges such as

� Unbalanced classes. Many times the class of interest is like a “needle in a
haystack.” An example is detecting a face in an image. Suppose that the gray
image has 500 rows and 600 columns of pixels, and a face is expected to be within
a 50-by-50 square of pixels. Then there are (500 − 49) × (600 − 49) = 248, 501
candidate squares. If the image is a photograph of a person, the class “face” will
contain a handful of objects (squares containing predominantly the face), and
class “nonface” will contain all remaining squares. Thus class “face” will be a
minute fraction of the data.

� Uncertain labels. Sometimes the labels of the objects cannot be assigned pre-
cisely. Take, for example, emotion recognition. Affective computing is gain-
ing importance in psychological research, entertainment, and gaming indus-
tries. However, it is hardly possible to pinpoint and label the experienced
emotion.

� Massive volumes. Computational costs, algorithmic tractability, and statistical
validity of the results are only a few of the problems with very high-dimensional
data and massive sample sizes.

� Nonstationary distributions. The data set collected at a certain time may become
obsolete if the circumstances or the problem characteristic change. Adaptive
classification is needed for such cases.

Standard and custom-tailored classifier ensemble methods are quickly turning into
one of the most favorite tools in all these areas.



DATA GENERATION 41

APPENDIX

1.A.1 DATA GENERATION

1 %-------------------------------------------------------------------%
2 function x = samplegaussian(N,mu,Sigma)
3 mu = mu(:); R = chol(Sigma);
4 for i = 1:N
5 x(i,:) = mu' + (R'*randn(size(mu)))';
6 end
7 %-------------------------------------------------------------------%

1 %-------------------------------------------------------------------%
2 % Subplot (a) ---
3 % Introduce the ellipse function
4 elx = @(t,xc,a,b,phi) xc+a*cos(t)*cos(phi)-b*sin(t)*sin(phi) ;
5 ely = @(t,yc,a,b,phi) yc+a*cos(t)*sin(phi)+b*sin(t)*cos(phi) ;
6

7 % Calculate the ellipse equations
8 N = 500;
9 t = rand(1,N)*2*pi; % sample random points from the figure

10 el1x = elx(t,-6,2,6,-2); el1y = ely(t,0,2,6,-2); % ellipse 1
11 el2x = elx(t,-2,4,3,-1); el2y = ely(t,-2,4,3,-1); % ellipse 2
12 el3x = elx(t,2,4,1,0.9); el3y = ely(t,4,4,1,0.9); % ellipse 3
13

14 % Add noise
15 edata = [el1x(:), el1y(:); el2x(:), el2y(:); el3x(:), el3y(:)];
16 edata = edata + randn(size(edata))*0.5;
17 w = ones(numel(el1x),1);
18 elabels = [w;w*2;w*3];
19

20 % Plot the data
21 figure, hold on
22 scatter(edata(:,1),edata(:,2),[],elabels,'linewidth',2.5)
23 axis equal off
24

25 % Subplot (b) ---
26 t = rand(1,1000)*2*pi; % sample random points from the figure
27 el1x = elx(t,0,3,9,-1); el1y = ely(t,0,3,9,-1);
28 el1x = el1x + randn(size(el1x)).*t*.2;
29 el1y = el1y + randn(size(el1y)).*t*.2;
30 figure
31 plot(el1x,el1y,'k.','markersize',15);
32 axis equal off
33 %-------------------------------------------------------------------%
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1 %-------------------------------------------------------------------%
2 function [d, labd] = samplecb(N,a,alpha)
3 d = rand(N,2);
4 d_transformed = [d(:,1)*cos(alpha)-d(:,2)*sin(alpha),…
5 d(:,1)*sin(alpha)+d(:,2)*cos(alpha)];
6 s = ceil(d_transformed(:,1)/a)+floor(d_transformed(:,2)/a);
7 labd = 2 - mod(s,2);
8 %-------------------------------------------------------------------%

1.A.2 COMPARISON OF CLASSIFIERS

1.A.2.1 MATLAB Functions for Comparing Classifiers

The output of all hypothesis-testing functions is in the form [H,p], where H is 0 if
the null hypothesis is accepted, and 1 if the null hypothesis is rejected at significance
level 0.05. The output p is the test p-value.

1 %-------------------------------------------------------------------%
2 function [H,p] = mcnemar(labels1, labels2, true_labels)
3 % --- McNemar test for two classifiers
4 % Needs Statistics Toolbox
5 % (all labels are integers 1,2,…)
6 v1 = labels1(:) == true_labels(:);
7 v2 = labels2(:) == true_labels(:);
8 t2(1,1) = sum(˜v1&˜v2);t2(1,2) = sum(˜v1&v2);
9 t2(2,1) = sum(v1&˜v2);t2(2,2) = sum(v1&v2);

10 % the two-way table [N00,N01;N10,N11]
11 % calculate the test statistic
12 if any([t2(1,2),t2(2,1)])
13 if t2(1,2) + t2(2,1) > 25
14 x2 = (abs(t2(1,2)-t2(2,1))-1)ˆ2/(t2(1,2)+t2(2,1));
15 % find the p-value
16 p = 1 - chi2cdf(x2,1);
17 else % exact test using binomial distribution
18 % t2(1,2) is compared to a binomial distribution
19 % with size parameter equal to t2(1,2) + t2(2,1)
20 % and "probability of success" = 0.5,
21 p=binocdf(min(t2(1,2),t2(2,1)),t2(1,2)+t2(2,1),0.5)…
22 + 1 - binocdf(max(t2(1,2),t2(2,1))-1,t2(1,2)+…

t2(2,1),0.5);
23 end
24 else % identical classifiers
25 p = 1;
26 end
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27 % calculate the hypothesis outcome at significance level 0.05
28 % H = 0 if the null hypothesis holds; H = 1 otherwise.
29 H = p < 0.05;
30 %-------------------------------------------------------------------%

1 %-------------------------------------------------------------------%
2 function [H,p] = tvariance(x,y,ts_tr_ratio)
3 % --- paired t-test with corrected variance
4 % Needs Statistics Toolbox
5 d = x - y;
6 md = mean(d); stdd = std(d);
7 se_corrected = stdd * sqrt(1/numel(x) + ts_tr_ratio);
8 t = md / se_corrected; % the test statistic
9 % two-tailed test

10 p = 2 * tcdf(-abs(t),numel(x)-1);
11 % calculate the hypothesis outcome at significance level 0.05
12 % H = 0 if the null hypothesis holds; H = 1 otherwise.
13 H = p < 0.05;
14 %-------------------------------------------------------------------%

1 %----------------------------------------------------------------------------%
2 function [H,p] = imandavenport(a)
3 % --- Iman and Davenport test for N classifiers on M data sets
4 % Needs Statistics Toolbox
5 % a_ji is the error of model j on data set i
6 % N rows, M columns
7 [N,M] = size(a);
8
9 r = ranks(a')'; R = mean(r);

10 x2F =12*N/(M*(M+1))*(sum(R.ˆ2) - M*(M+1)ˆ2/4);
11
12 % ===
13 % MATLAB Stats Toolbox variant with additional correction
14 % for tied ranks:
15 % [˜,t] = friedman(a,1,'off');
16 % x2F = t{2,5} % Friedman chiˆ2 statistic
17 % ===
18
19 FF = (N-1) * x2F / (N*(M-1) - x2F); % amended
20 p = 1 - fcdf(FF,(M-1),(M-1)*(N-1)); % p-value from the F-distribution
21 % calculate the hypothesis outcome at significance level 0.05
22 % H = 0 if the null hypothesis holds; H = 1 otherwise.
23 H = p < 0.05;
24 end
25
26 function ran = ranks(a)
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27 [maxr,maxcol] = size(a);
28 ran = zeros(size(a));
29 for i = 1:maxcol
30 [˜, rr] = sort(a(:,i)); [˜, b2] = sort(rr);
31 for j = 1 : maxr % check for ties
32 inr = a(:,i) == a(j,i);
33 b2(inr) = mean(b2(inr));
34 end
35 ran(:,i) = b2;
36 end
37 end
38 %----------------------------------------------------------------------------%

1 %-------------------------------------------------------------------%
2 function [H,p] = nemenyiposthoc(a)
3 % --- Nemenyi post-hoc test
4 % Needs Statistics Toolbox & function RANKS
5 % a_ji is the error of model j on data set i
6 % N rows, M columns
7 [N,M] = size(a);
8 r = ranks(a')'; R = mean(r);
9 const = M * (M-1) / 2;

10 for i = 1:M-1
11 for j = i+1:M
12 z = (R(i)-R(j))/sqrt(M*(M+1)/(6*N));
13 p(i,j) = 2*normcdf(-abs(z)); % two-tailed test
14 p(j,i) = p(i,j);
15 end
16 p(i,i) = 1;
17 end
18 p(M,M) = 1;
19 p = min(1,p*const);
20

21 % calculate the hypothesis outcome at significance level 0.05
22 % H = 0 if the null hypothesis holds; H = 1 otherwise.
23 H = p < 0.05;
24 end
25 %-------------------------------------------------------------------%

1 %-------------------------------------------------------------------%
2 function [H,p] = bonferroniposthoc(a)
3 % --- Bonferroni-Dunn post-hoc test
4 % Needs Statistics Toolbox & function RANKS
5 % a_ji is the error of model j on data set i
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6 % N rows, M columns
7 % The classifier of interest is in column 1 of a.
8 % The output contains M-1 results from the
9 % comparisons of columns 2:M with column 1

10

11 [N,M] = size(a);
12

13 r = ranks(a')'; R = mean(r);
14 const = M - 1;
15

16 for i = 2:M
17 z = (R(1)-R(i))/sqrt(M*(M+1)/(6*N));
18 % p(i-1) = 2*normcdf(-abs(z)); % two-tailed test
19 p(i-1) = normcdf(z); % one-tailed test
20 end
21 p = min(1,p*const);
22

23 % calculate the hypothesis outcome at significance level 0.05
24 % H = 0 if the null hypothesis holds; H = 1 otherwise.
25 H = p < 0.05;
26 end
27 %-------------------------------------------------------------------%

1.A.2.2 Critical Values for Wilcoxon and Sign Test

Table 1.A.1 shows the critical values for comparing two classifier models on N data
sets. Sub-table (a) gives the values for the Wilcoxon signed rank test (two-tailed),
and sub-table (b), the values for the sign test (one-tailed). For sub-table (b), classifier
model A is better than B if it wins on w

𝛼
or more data sets. Here we explain the

calculation of the critical values for the sign test.
Suppose that in comparing classifier models A and B, both were tested on N data

sets. Model A was found to be better on K out of the N sets. Can we claim that A
is better than B? The null hypothesis of our test, H0, is that there is no difference
between A and B. Then the probability that A wins over B on a randomly chosen
data set is 1∕2. The number of data sets where A wins over B in N attempts follows
a binomial distribution with parameters N and 1∕2. Under the null hypothesis, the
probability that A wins on K or fewer data sets is

Fb(K, N, 0.5) = 0.5N
K∑

i=0

N!
i!(N − i)!

, (1.A.1)

where Fb is the cumulative distribution function of the binomial distribution. The
alternative hypothesis, H1, is that A is better than B (one-tailed test). To reject the
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TABLE 1.A.1 Table of the Critical Values for Comparing Two Classifier Models on N
Data Sets. (a) Wilcoxon Signed Rank Test (Two Tailed), (b) Sign Test (One Tailed). For
Sub-table (b), Classifier Model A Is Better Than B if It Wins on w

𝛼
or More Data Sets

(a) (b)
𝛼 𝛼

N 0.1 0.05 0.01 N w0.10 w0.05

5 5 5
6 0 – – 6 6 6
7 2 0 – 7 6 7
8 4 2 0 8 7 7
9 6 3 2 9 7 8

10 8 5 3 10 8 9
11 11 7 5 11 9 9
12 14 10 7 12 9 10
13 17 13 10 13 10 10
14 21 16 13 14 10 11
15 25 20 16 15 11 12
16 30 24 20 16 12 12
17 35 28 23 17 12 13
18 40 33 28 18 13 13
19 46 38 32 19 13 14
20 52 43 38 20 14 15
21 59 49 43 21 14 15
22 66 56 49 22 15 16
23 73 62 55 23 16 16
24 81 69 61 24 16 17
25 89 77 68 25 17 18

null hypothesis and accept H1 at level of significance 𝛼, K must be large enough. For
example, let N = 5. Then Fb(K, N, 0.5) is

K 0 1 2 3 4 5

Fb(K, 5, 0.5) 0.0313 0.1875 0.5000 0.8125 0.9688 1.0000

Because of the discrete nature of the problem, we cannot achieve the desired level
of significance exactly. If the null hypothesis is correct, the probability of observing
K or more wins (A better than B) is

1 − Fb(K − 1, 5, 0.5). (1.A.2)

We must set the critical value of K so that this probability is smaller or equal to 𝛼.
Any number of wins greater than or equal to this critical value will allow us to reject
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the null hypothesis at the desired level of significance 𝛼 or better. Let 𝛼 = 0.05. We
have

1 − Fb(4, 5, 0.5) = 0.0313 (1.A.3)

and

1 − Fb(3, 5, 0.5) = 0.1875. (1.A.4)

Then the critical value K∗ is obtained from K∗ − 1 = 4, hence K∗ = 5.
Therefore, to construct the table with the critical values, we find

K′ = arg min
0≤K≤N−1

{
Fb(K, N, 0.5) ≥ 1 − 𝛼

}
, (1.A.5)

and set K∗ = K′ + 1 as the critical value.

1.A.3 FEATURE SELECTION

1 %-------------------------------------------------------------------%
2 function S = sfs_filter(a,laba,d)
3 % --- Sequential Forward Selection - filter approach
4 % a - data set
5 % laba - labels 1,2,3,…,
6 % d - desired number of features
7 % S - indices of the selected features
8 % (in order of selection)
9

10 c = max(laba); % number of classes
11 n = size(a,2); % number of features
12 F = ones(1,n); % features to choose from
13 S = []; % chosen subset (empty)
14

15 % calculate class means
16 x = zeros(c,n);
17 for k = 1:c
18 x(k,:) = mean(a(laba == k,:),1);
19 end
20

21 for i = 1:d
22 Remaining = find(F); % features not selected yet
23 for j = 1:numel(Remaining)
24 Sdash = S;
25 % temporarily add one feature
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26 Sdash = [Sdash Remaining(j)];
27 % calculate the criterion
28 crit(j) = mean(pdist(x(:,Sdash)));
29 end
30 % choose the best feature to add
31 [˜,best] = max(crit);
32 S = [S Remaining(best)]; % add the best feature
33 F(Remaining(best)) = 0; % remove from F
34 end
35 %-------------------------------------------------------------------%



2
BASE CLASSIFIERS

The classifiers whose decisions are combined to form the ensemble are called “base
classifiers.” This chapter details some of the most popular base classifier models.

2.1 LINEAR AND QUADRATIC CLASSIFIERS

2.1.1 Linear Discriminant Classifier

Linear and quadratic classifiers are named after the type of discriminant functions
they use. Let x ∈ R

n be the object to classify in one of c classes. Let wi ∈ R
n be a

vector with coefficients and wi0 be a constant free term. A linear classifier is any set
of c linear functions, one for each class, gi : R

n → R, i = 1,… , c,

gi(x) = wi0 + wT
i x. (2.1)

The tag of the largest gi(x) determines the class label.

2.1.1.1 Training Linear Discriminant Classifier. A straightforward way to train
a linear discriminant classifier (LDC) is shown in Figure 2.1 and detailed below:

1. Estimate the prior probabilities for the classes. Let Ni be the number of objects
in the data set Z from class 𝜔i, i = 1,… c, and yj ∈ Ω be the class label of
zj ∈ Z. Then

P̂(𝜔i) =
1
Ni

, i = 1,… , c. (2.2)

Combining Pattern Classifiers: Methods and Algorithms, Second Edition. Ludmila I. Kuncheva.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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LINEAR DISCRIMINANT CLASSIFIER (LDC)

Training

1. Given is a labeled data set Z.
2. Estimate the prior probabilities for the classes P̂(𝜔i) as in Equation 2.2.
3. Calculate estimates of the class means �̂�i from the data as in Equation 2.3.
4. Calculate the estimates of the covariance matrices for the classes, Σ̂i, using

Equation 2.4.
5. Calculate the common covariance matrix Σ̂ from Equation 2.5.
6. Calculate the coefficients and the free terms of the c discriminant functions using

Equation 2.6.
7. Return wi and wi0 for i = 1,… , c.

Operation

1. To classify an object x, calculate the discriminant functions gi(x), i = 1,… , c, using
Equation 2.1.

2. Assign to x the class label with the maximum gi(x).

FIGURE 2.1 Training and operation of the linear discriminant classifier.

2. Calculate estimates of the class means from the data:

�̂�i =
1
Ni

∑
yj=𝜔i

zj. (2.3)

3. Calculate the estimates of the covariance matrices for the classes, by1

Σ̂i =
1
Ni

∑
yj=𝜔i

(zj − �̂�i)(zj − �̂�i)
T
. (2.4)

4. Calculate the common covariance matrix for LDC as the weighted average of
the class-conditional covariance matrices:

Σ̂ = 1
N

c∑
i=1

NiΣ̂i. (2.5)

5. Calculate the coefficients and the free terms of the c discriminant functions:

wi = Σ̂−1
�̂�i, wi0 = log(P̂(𝜔i)) −

1
2
�̂�

T
i Σ̂

−1
�̂�i, i = 1,… , c. (2.6)

1We use the maximum likelihood estimate of the covariance matrices and note that this estimate is biased.
For an unbiased estimate take Σ̂i =

1
Ni−1

∑
yj=𝜔i

(zj − �̂�i)(zj − �̂�i)
T .
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Training of linear classifiers has been rigorously studied in the early pattern
recognition literature [106], dating back to the Fisher’s linear discriminant, 1936
[127]. In reality, neither are the classes normally distributed nor are the true values of
𝝁i and Σi known. Nonetheless, LDC has been praised for its robustness, simplicity,
and accuracy [178].

Note that small changes in the training data are not going to affect dramatically the
estimates of the means and the covariance matrix, hence the discriminant functions
are likely to be stable. This makes LDC an unlikely choice as the base classifier in
classifier ensembles.

2.1.1.2 Regularization of LDC Problems may arise if the common covariance
matrix Σ̂ is close to singular (ill-posed or poorly posed problem). A way of regular-
izing the estimates is to add a term to Σ̂i which will shrink it toward a multiple of the
identity matrix

Σ̂i(r) = (1 − r)Σ̂i +
r
n

tr
(
Σ̂i

)
I, (2.7)

where tr(⋅) denotes the trace of the matrix, n is the dimensionality of the feature space,
and I is the identity matrix of size n × n. This estimate has the effect of equalizing
the eigenvalues of Σ̂i which counters the bias inherent in sample-based estimates
of the eigenvalues [137]. The parameter r ∈ [0, 1] determines to what extent we
want to equalize the eigenvalues. For r = 0, there is no regularization and for r = 1,
Σ̂i is a diagonal matrix with eigenvalues equal to the averaged eigenvalues of the
sample-based estimate of the covariance matrix.

2.1.1.3 Optimality of LDC. When is LDC equivalent to the Bayes classifier? As
discussed in the previous chapter, any set of discriminant functions obtained by
a monotonic transformation from the posterior probabilities P(𝜔i|x) constitute an
optimal set in terms of minimum error. Let us form such a set by taking

gi(x) = log
(
P(𝜔i) p(x|𝜔i)

)
, i = 1,… , c, (2.8)

where P(𝜔i) is the prior probability for class 𝜔i and p(x|𝜔i) is the class-conditional
probability density function (pdf). Suppose that all classes are normally distributed
with means 𝝁i and covariance matrices Σi, that is, p(x|𝜔i) ∼ N

(
𝝁i,Σi

)
, i = 1,… , c.

Then Equation 2.8 takes the form

gi(x) = log(P(𝜔i)) + log

(
1

(2𝜋)
n
2
√|Σi| exp

{
−1

2
(x − 𝝁i)

TΣ−1
i (x − 𝝁i)

})
(2.9)

= log(P(𝜔i)) −
n
2
log(2𝜋) − 1

2
log(|Σi|) − 1

2
(x − 𝝁i)

TΣ−1
i (x − 𝝁i). (2.10)
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Assume that all class-covariance matrices are the same, Σi = Σ for all i = 1,… , c.
Opening the parentheses in the last term of Equation 2.10 and discarding all terms
that do not depend on 𝜔i, we obtain a new set of discriminant functions

gi(x) = log(P(𝜔i)) −
1
2
𝝁

T
i Σ

−1
𝝁i + 𝝁

T
i Σ

−1x = wi0 + wT
i x, (2.11)

where wi0 ∈ R and wi ∈ R
n are respectively the free term and the coefficients in

Equation 2.6. As we started with the optimal discriminant functions, and derived
the LDC coefficients, LDC is equivalent to the Bayes classifier (guaranteeing min-
imum error) under the assumption that the classes are normally distributed and the
covariance matrices are the same.

2.1.2 Nearest Mean Classifier

The nearest mean classifier (NMC) is the simplest variant of LDC where the object
is assigned to the class with the nearest mean.

As the convention is that larger values of the discriminant function indicate larger
preference for the respective class, we can take as discriminant functions the negative
squared Euclidean distance to the class means:

gi(x) = −(𝝁i − x)T (𝝁i − x) (2.12)

= −𝝁T
i 𝝁i + 2𝝁T

i x − xTx. (2.13)

The quadratic term xT x in this equation does not depend on the class label, and
therefore can be dropped, giving a set of new discriminant functions that are linear
on x :

gi(x) = −𝝁T
i 𝝁i + 2𝝁T

i x = wi0 + wT
i x. (2.14)

This classifier is identical to LDC when the covariance matrices for all classes are
the identity matrices, and all prior probabilities are equal. Therefore, NMC inherits
the LDC optimality for equiprobable classes following a normal distribution with
identity covariance matrices.

2.1.3 Quadratic Discriminant Classifier

The quadratic discriminant classifier (QDC) is defined by a set of quadratic discrim-
inant functions

gi(x) = wi0 + wT
i x + xT Wix, x, wi ∈ R

n, wi0 ∈ R, (2.15)

where Wi is an n × n matrix. The QDC training follows steps 1–3 of the LDC training
but skips step 4. Finally, the free terms, the coefficients, and the class-specific matrices
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are calculated as follows:

wi0 = log(P̂(𝜔i)) −
1
2
�̂�

T
i Σ̂

−1
i �̂�i −

1
2
log(|Σ̂i|), (2.16)

wi = Σ̂−1
i �̂�i, (2.17)

and

Wi = −1
2
Σ̂−1

i . (2.18)

QDC extends the optimality of LDC to the case where the covariance matrices of
the classes are not identical, that is, p(x|𝜔i) ∼ N(𝝁i,Σi). The set of optimal discrim-
inant functions is obtained from Equation 2.10 by discarding all terms that do not
depend on the class label 𝜔i.

QDC is even more prone to problems with singular covariance matrices than
LDC. Regularized versions of QDC have been proposed [137], where the covari-
ance matrices are gradually driven to the common covariance matrix used in LDC.
The process is again governed by a parameter that determines the extent of the
regularization.

LDC and QDC are parametric classifiers because their training involves estimating
the parameters of the assumed normal distributions.

LDC has a number of rivals which also produce a linear boundary between the
classes, notable examples of which are the support vector machine (SVM) classi-
fier with a linear kernel, the logistic classifier, and the Rosenblatt’s perceptron [107,
179]. Their training is different and so are their optimality conditions. Nonethe-
less, LDC is an “evergreen” in pattern recognition and still enjoys widespread
accolades.

2.1.4 Stability of LDC and QDC

LDC and QDC are usually seen as unsuitable for combining into an ensemble because
of their stability. Recall Figure 1.12 from Chapter 1 illustrating bias and variance of
the error. LDC and QDC are unlikely to change dramatically with small changes in
the data set. If they happen to not be sufficiently adequate for the problem at hand,
LDC and QDC will exhibit high bias (far from the true solution) and low variance
(stable boundaries).

◻◼ Example 2.1 High bias and low variance of LDC and QDC
The data set plotted in Figure 2.2a, named “fish data,” consists of the 2500 nodes
of a square two-dimensional grid [0, 1] × [0, 1]. The class labels are indicated with
black and gray.2 A random 10 percent of the labels are flipped to create an imperfect

2A MATLAB function for generating the fish data is given in Appendix 2.A.1.
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(a) True labels (b) Labels with 10% noise

FIGURE 2.2 A synthetic data set “fish,” 2500 points on a regular grid; class prevalence:
64% (gray) and 36% (black).

version of the data, shown in Figure 2.2b. The true labels against which classification
error is measured are the ones in Figure 2.2a. The true labels are assigned as:

z1 = x3 − 2xy + 1.6y2
< 0.4

z2 = −x3 + 2y sin(x) + y < 0.7

label(x, y) = xor(z1, z2). (2.19)

Twenty different boundaries are obtained by training the respective classifier with
a randomly sampled 25% of the data points. The data and the boundaries are plotted
in Figure 2.3.

The example demonstrates that there will hardly be much benefit from using
LDC/QDC as base classifiers in an ensemble. The ensemble will be able to reduce
the variance of the solution but will not improve on the bias. On the other hand,
imagine linear classifiers of similar accuracy as the ones in Figure 2.3a, but much
more scattered, as in subplot Figure 2.3c. If suitably combined, such classifiers have
a much better chance of producing a reasonable ensemble classification boundary.
The example hints at a very important issue in classifier ensembles—the diversity in
the ensemble, discussed later in the book.

(a) LDC (error 31%) (b) QDC (error 32%) (c) Random linear (error 31%)

FIGURE 2.3 Decision boundaries of LDC, QDC, and a random linear classifier.
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2.2 DECISION TREE CLASSIFIERS

2.2.1 Basics and Terminology

Seni and Elder [355] point out that at the KDNuggets poll in 2007, decision tree
classifiers scored a clear top position as the “most frequently used” data mining
method. In the same poll, neural networks and the SVM classifier were ranked
respectively 8th and 9th, with various other classifier ensemble methods further
down behind. In a similar poll in 2011, decision trees still reigned supreme, with
SVM climbing to the 7th place, and ensemble methods to the 9th place, leaving
neural networks in 11th place. Even though these polls were not taken across an
unbiased and representative canvas of researchers, their results faithfully reflect the
importance of decision trees.

What is so good about decision tree classifiers?

1. They can handle irrelevant and redundant variables. Each split uses a single
best variable, hence irrelevant variables may never be picked.

2. Continuous-valued, discrete, and categorical variables can be handled together;
there is no need to convert one type into another.

3. Scaling of the variables does not matter. Since each feature is handled separately
to find a bespoke threshold, there is no need to normalize or re-scale the data to
fit into a given interval. A distance is not trivial to formulate when the objects
are described by categorical or mixed-type features. Decision trees have the
advantage of bypassing this problem and are therefore nonmetric methods for
classification [107].

4. If all the objects are distinguishable, that is, there are no identical elements
of Z with different class labels, then we can build a tree classifier with zero
resubstitution error. This fact places tree classifiers in the unstable group:
capable of memorizing the training data so that small alterations of the
data might lead to a differently structured tree classifier. As we shall see
later, instability can be an advantage rather than a drawback for classifier
ensembles.

5. Tree classifiers are intuitive because the decision process can be traced as a
sequence of simple choices. Tree structures can capture a knowledge base in
a hierarchical arrangement; most pronounced examples of which are botany,
zoology, and medical diagnosis.

6. Training is reasonably fast while operation can be extremely fast.

Tree classifiers are usually described in graph terminology. A classification tree
consists of a root, intermediate nodes (optional), and leaves. The root and the inter-
mediate nodes branch the decision process, while the leaves assign the labels. An
object that is to be labeled travels along a path in the tree and reaches a leaf where it
receives its label. An example is given below.
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Coloration

White/
creamy

Brown/ gray Black

root

intermediate
nodes

Size
Small

(< 300 kg) Large
(≥ 300 kg)

Attack on
humans

Likely
Unlikely

leaves

FIGURE 2.4 An illustration of a decision tree and related terminology.

◻◼ Example 2.2 Terminology of tree classifiers
Shown in Figure 2.4 is a decision tree for distinguishing between three types of adult
bears.3 The three classes are

Ursus maritimus
(Polar Bear)

Ursus americanus
(American Black Bear)

Ursus arctos
(Grizzly Bear)

The features (attributes) are coloration, size, and attack on humans. (Curiously,
almost white individuals of American Black Bear could be found in the north-western
region of North America).

A special case of the decision tree classifier is the one-node tree [5], aptly called
a “decision stump.” The decision stump selects only one feature and makes a binary

3Based upon information found at: http://en.wikipedia.org/wiki/List_of_bears and http://en.wikipedia.org/
wiki/American_black_bear

http://en.wikipedia.org/wiki/List_of_bears
http://en.wikipedia.org/wiki/List_of_bears
http://en.wikipedia.org/wiki/American_black_bear
http://en.wikipedia.org/wiki/American_black_bear
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split on it. Such simple classifiers have been found to perform surprisingly well on
an overwhelming part of the commonly used data sets [172, 185].

Usually one feature is used at each nonterminal node (monothetic trees). Subsets
of features can be used at a node and the branching decisions can be made by a
formula based on these features. The reasons to stick with single features are rather
of psychological and engineering nature. If several features are involved in a split, the
interpretation of the final decision as a chain of simple decisions might be jeopardized.

2.2.2 Training of Decision Tree Classifiers

Decision tree training lends itself to an elegant recursive tree-growing algorithm as
shown in Figure 2.5 [51]. Starting at the root, decide whether the data is pure enough
to warrant termination of the training. If yes, make a leaf and add it to the tree. If
not, find the feature with the maximum discrimination ability. Split the data into
left and right children nodes according to the best threshold for that feature. Repeat
the procedure for the left and then for the right child, taking forward the respective
portions of the data reaching that node.

A termination criterion could be, for example, that all objects be labeled correctly.
Having constructed a perfect tree, we have to prune it to counter overtraining. This
process is called post-pruning. Alternatively, we may use some measurable objective
function to decide when to stop splitting, called also pre-pruning.

To automate the tree construction, it is reasonable to choose binary trees, which
means that each nonterminal node has exactly two children nodes. For any node

DECISION TREE CLASSIFIER

Training

1. Given is a labeled data set Z, a feature evaluation criterion and a leaf creating criterion.
2. Start with an empty tree and consider the root node.
3. If the leaf-creating criterion is satisfied, create a leaf and assign to it the label most

represented in the data that arrived at that node.
4. Otherwise, add an intermediate node to the tree. Use the feature evaluation criterion to

find the best feature and the respective threshold. Use these to split the data and send
the parts to the Left and Right children nodes.

5. Repeat from step 3 for both children nodes until the whole of Z is distributed into leaf
nodes.

6. Return the tree.

Operation

1. To label a new data point x, start at the root of the tree and follow the path according to
the feature values of x.

2. Assign to x the label of the leaf it finally arrives at.

FIGURE 2.5 Training and operation of a decision tree classifier.
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with multiple answers, there are equivalent representations with binary nodes. For
continuous-valued features, the question for a binary split is usually of the form “is
x ≤ xs?” where xs is the node’s threshold. For ordinal categorical features with M
successive categories, there are M − 1 possible splits. For nominal features with M
possible values, there are 2M−1 − 1 possible splits (the number of pairs of nonempty
subsets). Some tree construction algorithms (C4.5 and J48 in WEKA) generate M
children nodes instead of making a binary split.

2.2.3 Selection of the Feature for a Node

The compound objective in designing a tree classifier involves accuracy and simplic-
ity. The construction of the tree splits a given training set hierarchically until either
all the objects within the same sub-region have the same class label, or the sub-region
is pure enough.

Consider a c-class problem with label set Ω = {𝜔1,… ,𝜔c}. Let Pj be the prob-
ability for class 𝜔j at a certain node t of a decision tree. We can estimate these
probabilities as the proportion of points from the respective class within the data set
that reached node t. The impurity of the distribution of the class labels at t can be
measured in different ways.

Entropy-based measure of impurity

i(t) = −
c∑

j=1

Pj logPj, (2.20)

where 0 × log 0 = 0. For a pure region (only one class label), impurity takes its
minimum value, i(t) = 0. The most impure situation is when the classes have uniform
distribution. In this case, impurity is maximum, i(t) = log c.

Gini impurity

i(t) = 1 −
c∑

j=1

P2
j . (2.21)

Again, for a pure region, i(t) = 0. The highest impurity is i(t) = c−1
c

, in the case
of uniform distribution of the class labels. The Gini index can be thought of as the
expected classification error incurred if a class label was drawn randomly from the
distribution of the labels at t.

Misclassification impurity

i(t) = 1 −
c

max
j=1

{
Pj

}
. (2.22)
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Of the three indices, misclassification impurity is most related to the classification
accuracy. It gives the expected error if the node was replaced by a leaf and the chosen
label was the one corresponding to the largest Pj.

Assume that we split t into two children nodes t0 and t1 based on a binary feature
X. The gain in splitting t is in the drop of impurity on average, denoted Δi(t):

Δi(t) = i(t) − P(X = 0) × i(t0) − P(X = 1) × i(t1)

= i(t) − P(X = 0) × i(t0) − (1 − P(X = 0)) × i(t1), (2.23)

where P(𝜁 ) is the probability of event 𝜁 .
If the features we are using are binary, then the task of selecting the best feature

for node t is easy: try each one in turn and pick the feature with the highest Δi(t).
However, for features with multiple categories and for continuous-valued features,
we have to find first the optimal threshold to split t into left (tL) and right (tR).

◻◼ Example 2.3 Calculation of impurity indices
Figure 2.6 shows the three indices calculated for the fish data set (Figure 2.2b). Fifty
split points were checked on each axis and the indices Δi were plotted as functions of
the split point. The functions for feature X are projected underneath the data sub-plot,
and the functions for feature Y are projected on the top left sub-plot.
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FIGURE 2.6 Three indices of impurity used in growing decision trees: entropy-based, Gini,
and misclassification, calculated for 50 split points for each of X and Y for the fish data set.
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TABLE 2.1 Maximal Values of Δi and the Respective Split Points for the Three
Impurity Indices

Entropy Gini Misclassification

X Y X Y X Y

Δi 0.0359 0.0511 0.0317 0.0463 0.0272 0.0184
xs, ys 0.3061 0.4286 0.3061 0.4490 0.7959 0.4490

Table 2.1 shows the values of Δi for the three indices and the suggested split
points. For example, if we use Gini for building the tree, we should prefer the split on
Y , point ys = 0.4490, because this gives the highest value of Δi. On the other hand,
if we used the misclassification index, we should split on X at xs = 0.7959.

Gini index is often used in tree construction [107, 330] because it can distinguish
between choices for which the misclassification index gives the same value. The
choice of impurity index does not seem to be of vital importance for the quality of
the trained tree classifier compared to the importance of the stopping criterion and
the pruning method [107].

Note that the choice of the best feature for the current node is a typical example of
a greedy algorithm. The optimality of the local choices does not guarantee that the
constructed tree will be globally optimal.

2.2.4 Stopping Criterion

The tree construction could be carried on until there are no further impure nodes. If
the training data contains no objects with the same feature values and different class
labels, then a perfect tree can be constructed. However, such a perfect result could
be due to overtraining, and so the tree classifier would not be of much value. One
solution to this problem is to stop the training before reaching pure nodes. How do
we decide where to stop? If the splitting is stopped too early, we might leave the
classifier under-trained. Below we summarize the options suggested in [107].

Validation set. Put part of the training data aside as a validation set. After each
split, check the classification accuracy of the tree on the validation set. When the
error begins to increase, stop splitting.

Impurity reduction threshold. Set a small impurity reduction threshold 𝛽. When
the greatest possible reduction of impurity at node t is Δi(t) ≤ 𝛽, stop splitting and
label this node as the majority of the points. This approach does not exactly answer
the question “where to stop?” because the stopping is determined by the choice of 𝛽,
and this choice lies again with the designer.

Number/percentage threshold. We may decide not to split a node if it contains less
than k points or less than l percent of the total number of points in the training set.
The argument is that continuing the splitting beyond this point will most probably
lead to overtraining.
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Complexity penalty. Penalize the complexity of the tree by using a criterion such
as

minimize 𝛼 × size +
∑

leaves t

i(t), (2.24)

where “size” can be the total number of nodes, branches or leaves of the tree, and 𝛼

is a positive constant. Again, the problem here is choosing the value of 𝛼 so that the
“right” balance between complexity and accuracy is achieved.

Hypothesis testing. A hypothesis can be tested to decide whether a further split is
beneficial or not. Consider a two-class problem. Assume that there are n data points
at node t, n1 of which have labels 𝜔1 and n2 have labels 𝜔2. Assume that the best
feature for the node has been found to be X, and the best split of X is at some point xs.
The left and the right children nodes obtain nL and nR number of points, respectively.
Denote by nL1 the number of points from 𝜔1 in the left child node, and by nL2 the
number of points from 𝜔2 in the left child node. If the distributions of class labels at
the children nodes are identical to that at the parent node, then no purity is gained and
the split is meaningless. To test the equivalence of the distributions at the children
and the parent’s node, calculate

𝜒
2
L =

(n × nL1 − nL × n1)2

n × nL × n1
+

(n × nL2 − nL × n2)2

n × nL × n2
(2.25)

and

𝜒
2
R =

(n × nR1 − nR × n1)2

n × nR × n1
+

(n × nR2 − nR × n2)2

n × nR × n2
. (2.26)

We can take the average 𝜒
2 = 1

2

(
𝜒

2
L + 𝜒

2
R

)
, which, after simple algebraic transfor-

mations is

𝜒
2 = 1

2

(
𝜒

2
L + 𝜒

2
R

)
= n

2nR
𝜒

2
L = n

2nL
𝜒

2
R. (2.27)

If 𝜒2 is greater than the tabular value with the specified level of significance and
one degree of freedom, then the split is worthwhile. If the calculated value is smaller
than the tabulated value, we should stop splitting and should label the node as 𝜔1 if
n1 > n2, and 𝜔2 otherwise. The lower the level of significance, the smaller the tree
would be because greater differences in the distributions will be required to permit
splitting.

For c classes, the degrees of freedom will be c − 1, and the 𝜒
2 statistic should be

calculated as the average of 𝜒2
L and 𝜒

2
R, where

𝜒
2
L =

c∑
i=1

(n × nLi − nL × ni)
2

n × nL × ni
(2.28)
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and

𝜒
2
R =

c∑
i=1

(n × nRi − nR × ni)
2

n × nR × ni
.

Note that the𝜒2 statistic (Equation 2.25) or (Equation 2.28) can be used for a direct
comparison with a threshold set by the user. If the calculated value is greater than
the threshold, we should split the node, otherwise we label it as a leaf. Appropriate
values of the threshold vary between 0 (full tree) and 10 (heavy pre-pruning).

◻◼ Example 2.4 Step-by-step decision tree construction
Consider a data set with two classes as shown in Figure 2.7a. The training starts by
examining the leaf-creating criterion at the root. We have chosen the 𝜒

2 criterion
and a threshold of 5. At the root node 𝜒

2 = 23.52 > 5, therefore we split the node.
The best feature-threshold pair was identified using the Gini criterion: feature x1 with
threshold 0.37.
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(a) Data (b) Final class boundaries

FIGURE 2.7 The data and the classification boundaries of the trained tree.

As shown in Figure 2.8, the data is split into left and right parts according to
the vertical line in the top graph. The left part goes to the left child node where
𝜒

2 = 4.66 < 5, which indicates that a leaf should be formed. The class label of the
leaf is the predominant label in the data that has arrived at that leaf, hence class
“cross.”

The 𝜒
2 criterion at the right child node indicates that a new split must be car-

ried out. This time the best feature-threshold pair was feature x2, threshold 1.63.
Both children nodes satisfy the leaf criterion, which terminates the training pro-
cess. The final classification boundaries of the decision tree classifier are shown in
Figure 2.7b.
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Root node: data counts 60 / 30

Gini impurity = 0.44

χ2 = 23.52

Best split x1 = 0.37

Best split x2 = 1.63

Intermediate node: 5 / 24

Gini impurity = 0.29

χ2 = 11.14

No split

Leaf: CROSS (55 / 6)

Gini impurity = 0.18

χ2 = 4.66 < 5

No split

Leaf: CROSS (4 / 0)

Gini impurity = 0.00

χ2 N/Aχ2 = 1.34 < 5

Leaf: DOT (1 / 24)

Gini impurity = 0.08
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FIGURE 2.8 Training of the decision tree classifier.

A DIY MATLAB function for constructing a decision tree classifier is given
in Appendix 2.A.2. The code implements the Gini index for the splits and the 𝜒

2

criterion for pre-pruning. The code is meant only for illustration purposes and may
be quite slow on large data sets.

2.2.5 Pruning of the Decision Tree

Sometimes early stopping can be too short-sighted and prevent further beneficial
splits. This phenomenon is called the horizon effect [107]. To counter the horizon
effect, we can grow the full tree and then prune it to a smaller size. The pruning seeks
a balance between the increase of the training error and the decrease of the size of
the tree. Downsizing the tree will hopefully reduce overtraining. There are different
criteria and methods to prune a tree summarized by Esposito et al. [124].

As an example, consider Reduced Error Pruning (REP). This method is perceived
as the simplest pruning method. It uses an additional training set, called the “pruning
set,” unseen during the growing stage. Starting at the bottom (leaves) and working
our way up to the top (the root), a simple error check is calculated for all nonleaf
nodes. We replace the node with a leaf and label it to the majority class, then calculate
the error of the new tree on the pruning set. If this error is smaller than the error of
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the whole tree on the pruning set, we replace the node with the leaf. Otherwise, we
keep the subtree. This bottom-up procedure guarantees that the minimum tree that
is optimal with respect to the pruning set error will be found. Also, REP has low
complexity because each internal node is visited just once. A drawback of REP is
that it has a tendency toward over-pruning [124].

2.2.6 C4.5 and ID3

The methodology for tree construction explained so far is within the CART framework
[51]. The two main alternatives for designing trees are the ID3 algorithm and the C4.5
algorithm.

The ID3 algorithm is due to Quinlan [320], a third algorithm from a series of
interactive dichotomizer algorithms. It is designed for nominal data, so all continuous-
valued variables are first discretized and the categories are treated as unordered. The
main characteristic of ID3 is that each node has as many children nodes as the number
of categories of the (nominal) feature at that node. Since a feature is completely “used
up” on a single node, the tree can only be grown up to maximum n layers, where n
is the total number of features. Pruning of the resultant tree can be done as well. To
select a feature for a node, we should use a modified version of the impurity criteria
because the formulas introduced above inherently favor multiple splits over two-way
splits without a good reason. Instead of the absolute impurity reduction Δi, we should
use a scaled version thereof, called the gain ratio impurity. In an M-way split, let Pi
be the proportion of objects going into the i-th child node. Then

ΔiM = Δi

−
∑M

i=1 Pi logPi

. (2.29)

The main problem with ID3 when continuous-valued variables are concerned is the
way these are discretized into categories. There is an inevitable loss of information
involved in the process. Moreover, a careless formulation of the categories might
“kill” an otherwise important variable.

The C4.5 algorithm avoids the discretization problem by using the continuous-
valued variables as in CART, and the nominal variables as in ID3. Duda et al. [107]
note that C4.5 is the currently most popular tree construction algorithm among the
machine learning researchers.

2.2.7 Instability of Decision Trees

Decision tree classifiers are unstable in that small alteration of the training data may
lead to different splits and hence differently shaped classification regions.

◻◼ Example 2.5 We built 20 decision trees for the fish data (Figure 2.2b) on
randomly sampled 25% of the data. Figure 2.9a shows the classification regions
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(b) Pruned with χ2 < 5
(error 11.0% ± 1.2)

(a) Not pruned
(error 14.2% ± 1.2)

(c) Rotated and pruned
(error 10.7% ± 2.1)

FIGURE 2.9 Decision boundaries of the decision tree classifier.

when the trees are grown without any pruning. The noise points which happen to fall
in the training set of a given tree appeared as little “islands” in the decision region
of the opposite class. This explains the web of boundary lines in Figure 2.9a. The
average error rate of the 20 trees is 14.2%. The pruned trees show low bias (decision
regions follow the true classification regions) and a relatively good diversity of the
boundaries as shown in Figure 2.9b. This makes the decision tree classifier a good
candidate for a base ensemble classifier. Finally, to demonstrate the further potential
of the decision tree classifier, we created 20 more trees, but this time each sampled
training data set was rotated at a random angle between 0 and 2𝜋 radians. By design,
the classification boundaries of the standard decision trees are composed of segments
parallel to the coordinate axes. Therefore, by rotating the data we force boundaries
at different angles (Figure 2.9c). The average classification error with the rotated
data was lower than the error with the original data while the standard deviation
was higher. Low classification error and high diversity are an ideal combination for
classifier ensembles. A highly successful ensemble model called “Rotation Forest,”
which will be detailed later in the book, is based on the idea of combining decision
trees built on rotated data.

2.2.8 Random Trees

Breiman proposed a random tree classifier, which underpins one of the most suc-
cessful ensemble models to date—the random forest [50]. The difference from the
standard tree training is that, at each node, the feature to split upon is chosen from a
random subset of the original features. The cardinality of this subset, M, is a param-
eter of the training algorithm; as a rule of thumb, M is often taken to be the square
root of the total number of features. Breiman argues that the algorithm is not overly
sensitive to M. Random trees are important in the context of classifier ensembles.
A small decline in the classification accuracy is traded to gain some increase of the
diversity between the base classifiers, thereby opening the perspective for a better
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ensemble. The diversity will come from the randomized splits. The random trees are
grown without pre- or post-pruning, which contributes to their diversity.

2.3 THE NAÏVE BAYES CLASSIFIER

Naı̈ve Bayes or also “Idiot’s Bayes” [172] is a simple and often surprisingly accurate
classification technique [139, 212, 213, 218, 251, 253, 413]. Consider an object
represented by a feature vector x = [x1,… , xn]T that is to be assigned to one of
c predefined classes, 𝜔1,… ,𝜔c. Minimum classification error is guaranteed if the
class with the largest posterior probability, P(𝜔i | x), is chosen. To calculate posterior
probabilities, the Bayes formula is used with estimates of the prior probabilities,
P(𝜔i), and the class-conditional pdf, p(x |𝜔i):

P(𝜔i | x) =
P(𝜔i)p(x |𝜔i)∑c

j=1 P(𝜔j)p(x |𝜔j)
, i = 1,… , c. (2.30)

Obtaining an accurate estimate of the joined pdf is difficult, especially if the dimen-
sionality of the feature space, n, is large. The “naı̈vety” of the Naı̈ve Bayes model
comes from the fact that the features are assumed to be conditionally independent.
In this case the joined pdf for a given class is the product of the marginal pdfs:

p(x |𝜔i) =
n∏

j=1

p(xj |𝜔i), i = 1,… , c. (2.31)

Accurate estimates of the marginal pdfs can be obtained from much smaller amounts
of data compared to these for the joint pdf. This makes the Naı̈ve Bayes classifier (NB)
so attractively simple. The assumption of conditional independence among features
may look too restrictive. Nonetheless NB has demonstrated robust and accurate
performance across various domains, often reported as “surprisingly” accurate, even
where the assumption is clearly false [172].

The feature’s pdfs can be estimated in different ways. For a categorical feature
with a small set of possible values we can estimate the conditional frequencies of
all categories. For continuous-valued features, we can use a parametric or a non-
parametric estimate of p(x|𝜔i). The pdf estimates are subsequently plugged in Equa-
tion 2.31 and the posterior probabilities are calculated through Equation 2.30. The
class with the largest posterior probability is assigned to x. One possible variant
of the parametric approach is to assume normal distribution for each feature and
each class, and estimate the respective mean and standard deviation. For the non-
parametric approach, each feature is discretized, and the pdf is estimated for all
discrete values. This can be done, for example, by a histogram with K equally spaced
bins. A generic version of the NB training and classification algorithms is shown in
Figure 2.10.
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NAÏVE BAYES CLASSIFIER (NB)

Training

1. Given is a labeled data set Z (n features and c classes) and a pdf approximation
algorithm for a single feature.

2. Estimate the prior probabilities for the classes, P̂(𝜔i), i = 1,… , c.
3. For each class and each feature, approximate the class-conditional pdf, p̂(xj|𝜔i),

i = 1,… , c, j = 1,… , n.
4. Return P̂(𝜔i) and p̂(xj|𝜔i).

Operation

1. To label a new data point x, calculate p̂(xj|𝜔i) for the feature values in x, i = 1,… , c,
j = 1,… , n.

2. Calculate the discriminant functions

gi(x) = P̂(𝜔i)
n∏

j=1

p̂(xj|𝜔i), i = 1,… , c.

3. Assign to x the class label with the maximum gi(x).

FIGURE 2.10 Training and operation of the Naı̈ve Bayes classifier.

◻◼ Example 2.6 Classification boundaries of the Naı̈ve Bayes classifier (NB)
Consider the fish data set shown in Figure 2.2b. Twenty random subsamples were
taken, each containing a quarter of the points on the grid. Figure 2.11a shows the
classification boundaries for the parametric Naı̈ve Bayes classifier (normal distribu-
tion for each feature and each class). Figure 2.11b shows the boundaries where each
of the 20 samples was rotated at a random angle between 0 and 2𝜋 radians. The plots
show that NB is reasonably sensitive to alterations of the data such as sub-sampling
and rotation, and has a slightly better accuracy than LDC and QDC. The MATLAB
code for the NB training and classification is given in Appendix 2.A.2.2.

(a) Original (error 28.0% ±1.1) (b) Rotated (error 27.8% ± 1.5)

FIGURE 2.11 Decision boundaries of the parametric Naı̈ve Bayes classifier (normal distri-
bution) for the fish data with 10% label noise.
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2.4 NEURAL NETWORKS

Artificial Neural Networks (ANNs or simply NNs) originated from the idea to model
mathematically human intellectual abilities by biologically plausible engineering
designs. Meant to be massive, parallel computational schemes resembling a real brain,
NNs evolved to become a valuable classification tool with a significant influence on
pattern recognition theory and practice. Neural networks are often used as base
classifiers in multiple classifier systems [360]. Similarly to tree classifiers, NNs are
unstable, in that small changes in the training data might lead to a large change in the
classifier, both in its structure and parameters.

Literature on NNs is excessive and continuously growing [40, 180, 330], discussing
NNs at various theoretical and algorithmic depth.

Consider an n-dimensional pattern recognition problem with c classes. The NN
obtains a feature vector x = [x1,… , xn]T ∈ R

n at its input and produces values for
the c discriminant functions g1(x),… , gc(x) at its output. Typically NNs are trained
to minimize the squared error on a labeled training set Z = {z1,… , zN}, zj ∈ R

n, and
yj ∈ Ω:

E = 1
2

N∑
j=1

c∑
i=1

(
gi(zj) − (𝜔i, yj)

)2
, (2.32)

where (𝜔i, yj) is an indicator function taking value 1 if the label of zj, yj is 𝜔i,
and 0 otherwise. It has been shown that the set of discriminant functions obtained
by minimizing Equation 2.32 approach the posterior probabilities for the classes for
data size N → ∞ [328, 341, 406], that is,

lim
N→∞

gi(x) = P(𝜔i|x), x ∈ R
n
. (2.33)

This result was brought to light in connection with NNs but, in fact, it holds for any
classifier which can approximate an arbitrary discriminant function with a specified
precision. This universal approximation property has been proven for the two impor-
tant NN models: the Multi-Layered Perceptron (MLP) and the Radial Basis Function
(RBF) networks (for summaries of the literature and proofs refer to [40] and [330]).
Various NN training protocols and algorithms have been developed, and these have
been the key to the success of NN classifiers.

2.4.1 Neurons

The processing units in the human brain are neurons of different specialization
and functioning. The earliest models of neurons, including the one proposed by
McCulloch and Pitts [269] and Fukushima’s cognitron [142], reprinted in the collec-
tion [17], were more similar to the biological neuron than later models. For example,
they incorporated both activating and veto-type inhibitory inputs. To avoid confu-
sion, artificial neurons are often given other names: “nodes” [313], “units” [40, 330],
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FIGURE 2.12 The NN processing unit.

“neurodes” [268]. Simple models will need a large structure for the whole system to
work well (e.g., the weightless neural networks [7]) while for more complex models
of neurons a few units will suffice. In both cases proper algorithms are needed to
train the structure and parameters of the NN. Complex models without good training
algorithms are not of much use. The basic scheme of a processing node is shown in
Figure 2.12.

Let u = [u0,… , uq]T ∈ R
q+1 be the input vector to the node and v ∈ R be its out-

put. We call w = [w0,… , wq]T ∈ R
q+1 a vector of synaptic weights. The processing

element implements the function

v = 𝜙(𝜉); 𝜉 =
q∑

i=0

wiui, (2.34)

where 𝜙 : R → R is the activation function and 𝜉 is the net sum. Typical choices for
𝜙 are

� The Heaviside (threshold) function:

𝜙(𝜉) =
{

1, if 𝜉 ≥ 0,

0, otherwise.
(2.35)

� The sigmoid function:

𝜙(𝜉) = 1
1 + exp(−𝜉)

. (2.36)

� The identity function:

𝜙(𝜉) = 𝜉. (2.37)

The three activation functions are shown in Figure 2.13.
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FIGURE 2.13 Threshold, sigmoid, and identity activation functions.

The sigmoid activation function is the most widely used one because:

� It can model both linear and threshold functions to a desirable precision.
� The sigmoid function is differentiable, which is important for the NN training

algorithms. Moreover, the derivative on 𝜉 has the simple form 𝜙
′(𝜉) = 𝜙(𝜉)(1 −

𝜙(𝜉)).

The weight “−w0” is used as a bias and the corresponding input value u0 is set to
1. Equation (2.34) can be rewritten as

v = 𝜙

(
𝜁 − (−w0)

)
= 𝜙

(
q∑

i=1

wiui − (−w0)

)
, (2.38)

where 𝜁 is now the weighted sum of the inputs from 1 to q. Geometrically, the
equation

q∑
i=1

wiui − (−w0) = 0 (2.39)

defines a hyperplane in R
q. Therefore a node with a threshold activation function

(2.35) responds with value +1 to all inputs [u1,… , uq]T on the one side of the
hyperplane, and value 0 on the other side.

2.4.2 Rosenblatt’s Perceptron

An important model of a neuron was defined by Rosenblatt [340]. It is called per-
ceptron and is famous for its training algorithm. The perceptron is implemented as
Equation 2.34 with a threshold activation function

𝜙(𝜉) =
{

1, if 𝜉 ≥ 0,

−1, otherwise.
(2.40)
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This one-neuron classifier separates two classes in R
n by the linear discriminant

function defined by 𝜉 = 0. The vectors from one of the classes get an output value of
+1, and from the other class, −1. The algorithm starts with random initial weights
w and proceeds by modifying the weights as each object from Z is submitted. The
weight modification takes place only if the current object zj is misclassified (appears
on the “wrong” side of the hyperplane). The weights are corrected by

w ← w − v𝜂zj, (2.41)

where v is the output of the node for zj and 𝜂 is a parameter specifying the learning rate.
Beside its simplicity, the perceptron training has the following interesting properties:

� If the two classes are linearly separable in R
n, the algorithm always converges

in a finite number of steps to a linear discriminant function that gives no resub-
stitution errors on Z, for any 𝜂. (This is called “the perceptron convergence
theorem.”)

� If the two classes are not linearly separable in R
n, the algorithm will loop

infinitely through Z and never converge. Moreover, there is no guarantee that
if we terminate the procedure at some stage, the resultant linear function is the
one with the smallest possible misclassification count on Z.

2.4.3 Multi-Layer Perceptron

By connecting perceptrons we can design an NN structure called the Multi-Layer
Perceptron (MLP). MLP is a feed-forward structure because the output of the input
layer and all intermediate layers is submitted only to the higher layer. The generic
model of a feed-forward NN classifier is shown in Figure 2.14.

Here “layer” means a layer of neurons. The feature vector x is submitted to an
input layer, and at the output layer there are c discriminant functions g1(x),… , gc(x).
The number of hidden layers and the number of neurons at each hidden layer are not
limited. The most common default conventions are:

� The activation function at the input layer is the identity function (2.37).
� There are no lateral connections between the nodes at the same layer (feed-

forward structure).
� Nonadjacent layers are not connected directly.
� All nodes at all hidden layers have the same activation function 𝜙.

This model is not as constrained as it might look. It has been proven that an MLP
with a single hidden layer and threshold nodes can approximate any function with
a specified precision [40, 330, 349]. However, the proofs did not offer a feasible
training algorithm for the MLP. The conception and subsequent refinement of the
error backpropagation training algorithm in the 1980 heralded a new era in the NN
field, which continues to this day.
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FIGURE 2.14 A generic model of an MLP classifier.

The error backpropagation training of an MLP updates the network weights iter-
atively until the output error drops below a given threshold or until the limit of the
number of iterations is reached. It is a gradient descend (greedy) algorithm, which
converges to a set of weights corresponding to a local minimum of the output error.
Different random initializations may lead to different minima. The algorithm goes
through the following steps.

1. Choose the MLP structure: number of hidden layers, number of nodes at each
layer, and a differentiable activation function. Pick the learning rate 𝜂 > 0, the
error goal 𝜖 > 0, and T , the number of training epochs.4

2. Initialize the training procedure by picking small random values for all weights
(including biases) of the NN.

3. Set the initial error at E = ∞, the epoch counter at t = 1, and the object counter
at j = 1.

4. While (E > 𝜖 and t ≤ T) do

(a) Submit zj as the next training example.

(b) Forward propagation. Calculate the output of the NN with the current
weights.

(c) Backward propagation. Calculate the error term at each node at the output
layer. Calculate recursively all error terms at the nodes of the hidden layers.∗

(d) For each hidden and each output node update the weights using the learning
rate 𝜂 to scale the update.∗

4An epoch is a pass of the whole data set, object by object, through the training algorithm.
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(e) Calculate E using the current weights and Equation 2.32.

(f) If j = N (a whole pass through Z—an epoch—is completed), then set
t = t + 1 and j = 0. Else, set j = j + 1.

5. End of the while loop.

Marked with ∗ are steps for which the details are omitted. The full algorithmic
detail can be recovered from the MATLAB code given in the Appendix 2.A.2.3. The
MLP trained through this code has a single hidden layer (the most popular choice)
with a number of nodes given as an input parameter.

There are two ways to implement the training procedure: batch and online. The
version explained above is the online version where the updates of the weights
take place after the submission of each object. In the batch version, the errors are
accumulated and the updating is done only after all of Z is seen, that is, there is one
update after each epoch.

◻◼ Example 2.7 Classification boundaries of the MLP classifier
Figure 2.15 shows the classification boundaries for the fish data of 20 MLP classifiers
run with different random initializations. The figure shows why the MLP classifier
is one of the preferred base models in classifier ensembles: the boundaries are fairly
precise and diverse at the same time.

FIGURE 2.15 Decision boundaries of the MLP classifier with eight hidden neurons (average
training error 17.45% ± 6.67) for the fish data with 10% label noise.

2.5 SUPPORT VECTOR MACHINES

2.5.1 Why Would It Work?

Ever since its conception, the SVM classifier has been a prominent landmark in
statistical learning theory [61]. The success of SVM can be attributed to two ideas:
(1) a transformation of the original space into a very high-dimensional new space
and (2) identifying a “large margin” linear boundary in the new space.
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◻◼ Example 2.8 Linear discrimination in a higher-dimensional space
To explain why the first idea works, consider the one-dimensional two-class data set
shown with two types of markers on the x-axis in Figure 2.16.

−1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

 x

 x2

FIGURE 2.16 One-dimensional data set, which becomes linearly separable in the space
(x, x2).

The two classes are not linearly separable in the one-dimensional space x. However,
by adding a second dimension, x2, the classes become linearly separable, as shown
in the figure. The linear classification boundary in R

2 translates into a nonlinear
boundary in the original one-dimensional space.

2.5.2 Classification Margins

The second idea is related to the concept of a margin. We can define a margin for
an object x as the signed distance from x to the classification boundary. If x is in its
correct classification region, the margin is positive, otherwise the margin is negative.

Distance from a point to a hyperplane. Let wTx − w0 = 0 be the equation of a
hyperplane in R

n and A ∈ R
n be the point of interest. Denote by B be the point on the

hyperplane such that A⃗B is orthogonal to the hyperplane. With no loss of generality,
Figure 2.17 illustrates the argument in two dimension.

Since w is a normal vector to the line (hyperplane in the general case), vector A⃗B
is collinear to w, that is, A⃗B = A⃗ − B⃗ = kw, where A⃗ and B⃗ are the position vectors
of points A and B. Then

wT (A⃗ − B⃗) = kwT w. (2.42)

Since B lies on the line, wTB⃗ − w0 = 0. Then

wTA⃗ + w0 − wTB⃗ + w0 = kwT w (2.43)

wTA⃗ + w0 = kwT w (2.44)
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FIGURE 2.17 Illustration of the distance calculation from A to the line.

hence

k =
wTA⃗ + w0

wT w
=

wTA⃗ + w0||w||2 . (2.45)

The distance between A and the line is the magnitude of A⃗B:

||A⃗B|| = k||w|| = wTA⃗ + w0||w|| . (2.46)

The SVM classifier is based on the theory of Structural Risk Minimisation (SRM)
[403]. According to SRM, maximising the margins of a classifier on the training data
may lead to a lower generalization error.

◻◼ Example 2.9 Classification margins
To illustrate classification margins, assume that the task is to design a classifier for
the two-dimensional data set shown in Figure 2.18.

The cumulative distributions of the classification margins for the two lines are
shown in Figure 2.19. Ideally, all margins should be large and positive, so the cumu-
lative distribution is a singleton with value 1 (100%) at the maximum possible margin.
The distribution for the better boundary line (B) is shifted to the right, indicating that
there is a larger proportion of large positive margins for line B than for line A.
The point on the vertical line at margin 0 is the proportion of negative margins,
which is exactly the training error. When the training error is zero, we should aspire
to build a classifier whose margin distribution is shifted to the right as much as
possible.
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FIGURE 2.18 Data sets; two classification boundaries and the respective classification
margins.
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FIGURE 2.19 Cumulative distribution of the classification margins for the two boundary
lines in Figure 2.18.

2.5.3 Optimal Linear Boundary

Let us start with two linearly separable classes. Any boundary that separates the
classes will give zero training error. However, the boundary can be improved further
by trying to increase the margins. In addition to ensuring zero training error, the SVM
classifier is built in such a way that the linear boundary is as far as possible from the
nearest data points.

Consider a data set Z = {z1,… , zN}, zi ∈ R
n, labeled in two classes using y ∈

{−1, 1} as the class labels. Suppose that the classes are linearly separable by a
boundary with equation wTx − w0 = 0. The class labels are assigned by the sign of
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the left-hand side of the equation. Because of the linear separability, there exists a
nonnegative constant m such that

yi(w
Tzi − w0) ≥ m, ∀ i = 1,… , N. (2.47)

Dividing both sides by ||w||, the left-hand side becomes the (signed) margin of
object zi:

yi

(
wT||w||zi −

w0||w||
)

≥
m||w|| . (2.48)

Absorbing ||w|| into new constants, equation (2.48) can be rewritten as

yi(𝛽
Tzi − 𝛽0) ≥ M. (2.49)

Thus SVM looks for a maximum margin classifier by solving the following optimiza-
tion problem [61, 179]:

max
𝛽,𝛽0,||𝛽||=1 M

subject to yi(𝛽
T zi − 𝛽0) ≥ M, i = 1,… , N. (2.50)

◻◼ Example 2.10 Support vectors
This example shows the trained SVM classifier for a simple data set (Figure 2.20).
The points which are at the exact minimum distance corresponding to the minimum
margin are called the support vectors. These points are marked in the figure with
circles.
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FIGURE 2.20 An example of the SVM classification boundary and the support vectors.
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2.5.4 Parameters and Classification Boundaries of SVM

The optimization problem can be posed and solved for nonseparable classes too. In
this case, SVM needs a parameter C which measures what penalty is assigned to
errors [33].

To project the original space into a new high-dimensional space, SVM uses the
so-called “kernel trick.” This means that there is no need for the original space
to be explicitly transformed into the new space. Instead, for a given data set Z =
{z1,… , zN}, the SVM optimisation procedure seeks to find the coefficients 𝛼i and
w0 in the following expression:

f (x) =
N∑

i=1

𝛼iK(x, zi) + w0, (2.51)

where K(., .) is a kernel function. The training of the SVM classifier results in all
𝛼i being zero, except for the coefficients multiplying the support vectors. Popular
choices for kernel functions are:

� The polynomial kernel family with parameter d:

K(x, y) = (1 − xTy)d, (2.52)

the most used of which is the linear kernel (d = 1).
� The radial-basis kernel:

K(x, y) = exp(−𝛾||x − y||2). (2.53)

Interpreting 𝛾 as 1
2𝜎2 , this model is also called the Gaussian kernel.

� The neural network kernel

K(x, y) = tanh(𝜅1(xTy) + 𝜅2), (2.54)

where 𝜅1 and 𝜅2 are adjustable parameters.
Notice that the calculation of the optimal boundary is carried out in the high-

dimensional space. Depending on the chosen parameters of SVM, a linear boundary
in this space can be projected as a nonlinear boundary in the original space. If train-
ing errors are heavily penalized, the classifier may end up overtrained, with jagged
classification boundary. The following example illustrates the nonlinear bound-
aries obtained though the Gaussian kernel for different values of the penalizing
parameter C.

◻◼ Example 2.11 SVM boundaries and the effect of C
Figure 2.21 shows the classification boundaries of the SVM classifier for the fish
data set. Twenty sets of 500 points were randomly sampled from the grid data and an
SVM classifier with the Gaussian kernel was trained on each set.
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FIGURE 2.21 Decision boundaries of the SVM classifier with C = 1 (average error over
the whole data set 17.01% ± 0.84).

(a) C = 1 (b) C = 10,000

FIGURE 2.22 Decision boundaries of the SVM classifier: (a) C = 1; 479 support vectors,
training error rate 16.40%; (b) C = 10, 000; 319 support vectors, training error 12.00%.

Figure 2.22 shows the SVM classification boundaries for two values of the penal-
izing parameter C and the Gaussian kernel. The data for the training were again a
random sample of 500 points from the grid. It can be seen that for the smaller value
C (Figure 2.22a), the boundaries are smoother and the training error rate is higher
than for the larger C. However, penalizing the errors too strongly pushes the SVM
classifier into learning the noise in the data, which can be seen as the little “islands”
in Figure 2.22b. The support vectors are also marked in the figure.

Tuning of the SVM parameters is usually done by cross-validation on the training
part of the data [67]. Depending on the choices of a kernel and its parameters, the
classification boundaries could be flexible and fairly accurate, which makes the SVM
classifier a good ensemble candidate.
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2.6 THE k-NEAREST NEIGHBOR CLASSIFIER (k-nn)

The k-nearest neighbor classifier (k-nn) is one of the most theoretically elegant and
simple classification techniques [81, 107, 141]. Let V = {v1,… , vM} be a labeled
reference set containing M points in R

n, referred to as prototypes. Each prototype
is labeled in one of the c classes. Usually, V is the whole of Z. To classify an input
x, the k nearest prototypes are retrieved from V together with their class labels. The
input x is labeled to the most represented class within this set of neighbors.

The error rate of the k-nn classifier, Pk-nn satisfies

lim
M,k→∞, k

M
→0

Pk-nn = PB, (2.55)

where PB is the Bayes error rate. When k = 1, the k-nn classifier becomes the famous
nearest neighbor classifier, denoted 1-nn. For 1-nn, when N → ∞, the error rate P1-nn
is bounded from above by twice the Bayes error rate [107]:

P1-nn ≤ 2PB. (2.56)

The classification regions of the 1-nn rule are unions of Voronoi diagrams. The
Voronoi cell V for zj ∈ Z is defined as the set of points in R

n whose nearest neighbor
from Z is zj:

V(zj) =
{

x
||||x ∈ R

n, d(zj, x) = min
zk∈Z

d(zk, x)

}
, (2.57)

where d(⋅, ⋅) is a distance in R
n. A typical choice is the Euclidean distance.

◻◼ Example 2.12 Voronoi cells
MATLAB code for 1-nn is given in Appendix 2.A.2.4. Using this code and the fish
data set with 20% label noise (Figure 2.23a), we ran 5000 iterations. In each iteration
we chose randomly seven data points as the reference set. The error on the training

(b) Voronoi cells(a) Fish data with 20% noise

FIGURE 2.23 The fish data with 20% label noise and the Voronoi cells for the reference set
of seven prototypes found through random search.
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(noisy) set was estimated. The best set of prototypes among the 500 selections is
displayed with cross markers, and their Voronoi cells are outlined in Figure 2.23b.
The error rate with respect to the noise-free data set is 12.44%.

Some of the drawbacks of k-nn are that it is computationally expensive, adversely
sensitive to noisy and redundant features and the choice of the similarity function.
Besides, k-nn it does not have a natural mechanism for handling missing values.

Diversity can be induced into the k-nn classifier by using: different subsets of
features, different distance metrics in R

n, different values of k, and edited versions
of Z as the reference set V. The classifier is sensitive to the choice of features on
which the distance is calculated. This suggests that feature sub-sampling should be
considered when building ensembles of k-nn classifiers. Taking different subsets of
the data will not alter the k-nn classifier dramatically, making it a stable classifier,
and unsuitable for ensembles. The example below demonstrates the use of k-nn in an
ensemble setting based on random data editing.

◻◼ Example 2.13 Edited 1-nn in an ensemble setting
Again we used the fish data set with 20% label noise and ran a Monte Carlo experiment
with 5000 iterations. In each iteration we chose randomly seven data points as the
reference set. The error on the training (noisy) set was estimated. At the end of the
run, we chose the best 25 prototype sets, with the smallest training error. Figure 2.24
shows the following boundaries overlaid on the noisy training set: (a) the 25 1-nn
classifiers each using a reference set of seven prototypes; (b) the 1-nn classifier using
the pooled 25 prototype sets together; (c) the majority vote ensemble classifier across
the 25 individual 1-nn; and (d) the 1-nn classifier on the result of another Monte
Carlo experiment with 5000 iterations looking for a reference set with 25 × 7 = 175
prototypes.

The example shows that 1-nn can be used in ensemble context from at least two
different perspectives: aggregating the decision of classifiers with heavily pruned
reference sets and pooling sets of prototypes found through a random search or a
similar algorithm.

(d) Large set
14.44%

(c) Ensemble
13.08%

(b) Pooled
12.12%

(a) Individual
17.63%

FIGURE 2.24 Boundaries of 1-nn classifiers. The values underneath are the error rates with
respect to the noise-free data.
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2.7 FINAL REMARKS

How do we choose a particular classifier model? In spite of this being the most
important question in pattern recognition and machine learning, we are still looking
for answers. The technical question of how we compare N classifiers on M data sets
was discussed in the previous chapter. However, we cannot generalize without limit
the findings of any such experiment, regardless of how extensive that may be. Duin
[110] points out that a classifier preferred by the author of a study can be shown
to dominate the off-the-shelf models due to preferential parameter tuning or data
set selection. This may well happen by luck. Over the years, pattern recognition
has witnessed the rise and demise of many classifier models. Some of them have
withstood the test of time, for example, the simple decision tree classifier and the
nearest neighbor classifier. Why are there so many models around?

The No Free Lunch Theorem partly answers this question. Cited after [107], this
theorem states that

“On the criterion of generalisation performance, there are no context- or problem-
independent reasons to favour one learning or classification method to another.”

This seems to be throwing a spanner in the wheel! Why bother proposing new
models or perfecting the old ones? The theorem merely reinforces the message
that although there is general wisdom about classifiers, for example, that ensembles
outperform single classifiers, this is not guaranteed for all data sets or the data set at
hand.

2.7.1 Simple or Complex Models?

It is intuitively clear that simple models or stable classifiers are less likely to be
overtrained than more sophisticated models. However, simple models might not be
versatile enough to fit complex classification boundaries. More complex models such
as neural networks have a better flexibility but require more system resources and are
prone to overtraining. What do “simple” and “complex” mean in this context? The
main aspects of complexity can be summarized as [11]:

� Training time and training complexity.
� Memory requirements (e.g., the number of the parameters of the classifier that

are needed for its operation).
� Running complexity.

An often cited postulate attributed to William of Ockham (c. 1285–1349), termed
Occam’s razor, says that “Entities should not be multiplied beyond necessity.” The
interpretation of Occam’s razor in terms of classifier models could be that, other
things being equal, a simpler classifier should be preferred to a more complex one.
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An assumption underpinning this heuristic is that if more data are available, the
classifier will be more accurate.

Although theoretically disputed, the Occam’s razor philosophy and the resulting
heuristic approach toward avoiding over-fitting enjoy empirical success. Duda et al.
[107] argue that we owe this success to the type of problems we are likely to face.
Our data usually favor simpler methods over more complex ones.

Interestingly, classifier ensembles are based upon a certain degree of violation of
Occam’s razor. In order to obtain a collection of diverse classifier members, we allow
and even encourage overtraining. In a situation where an individual classifier model
and an ensemble give the same generalization error, the (more complex) ensemble
may still be preferable because of its expected robustness.

2.7.2 The Triangle Diagram

Given that there is no universal winner of the all-classifier contest, we can try to find
out for what type of data a given classifier model works well. Consider the diagram in
Figure 2.25 that takes into account several characteristics of the data set. The x-axis
is the prior probability of the largest class and y-axis is the prior probability of the
smallest class. The feasible space is within a triangle, as shown in the figure. The right
edge corresponds to the two-class problems because for this case the smallest and
the largest prior probabilities sum up to 1. The number of classes increases from this
edge toward the origin (0,0). The left edge of the triangle corresponds to equiprobable
classes. The largest prior on this edge is equal to the smallest prior probability, which
means that all classes have the same prior probabilities. This edge can be thought of
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FIGURE 2.25 The triangle diagram. The size and the gray-level intensity of the dots indicate
the classification accuracy. Larger and darker dots signify higher accuracy.
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FIGURE 2.26 Feasible regions for the triangle diagram.

as the edge of balanced problems. The balance disappears toward the bottom right
corner. The pinnacle of the triangle corresponds to two equiprobable classes.

To illustrate the application of the triangle diagram, consider a simulation where
500 problems were generated with 2–30 classes with Dirichlet random priors.5 The
classes were two-dimensional Gaussians, with random means drawn uniformly from
the square [0, 4] × [0, 4] and identity covariance matrices. The number of points
sampled from class i was ⌈100 × pi⌉, where ⌈⋅⌉ denotes “ceiling,” the nearest larger
integer. A linear classifier was trained on each data set and tested on an independently
generated data set from the same distribution. Each data set is depicted as a point
on the triangle diagram. The classification accuracy is indicated by the size and the
colour of the dot—larger and darker dots are associated with higher accuracy. The
diagram shows that higher accuracy of LDC is obtained for fewer classes.

Comparisons of classifiers can be illustrated by the triangle diagram. Suppose that
we are interested in the type of data where classifier A is better than classifier B. We
can plot the data dots where A wins and where B wins with different markers.

Not all regions of the triangle are accessible. Figure 2.26a shows the feasible region
for c = 3 classes, and Figure 2.26b shows the feasible coverage for c = 2, 3, 4,…
classes.

For example, consider three classes such that the largest prior probability is a ∈
[0, 1], a > 1∕3. Then there is a limit on the smallest probability. The largest smallest
probability in this case is when the two minority classes share the remainder 1 − a
in equal measure. Therefore, the upper limit of the smallest prior probability will be
1−a

2
. Note also that the largest prior cannot be smaller than 1

3
, which marks the end

of the upper bound segment between points (1, 0) and
(

1
3
, 1

3

)
. The largest prior a

also restricts the smallest prior from below. For example, if a = 0.35, the smallest
prior cannot be 0 because the remaining prior will be 0.65 > a. The minimum cannot

5Each set of numbers pi, i = 1,… , c, pi > 0,
∑

i pi = 1, has the same chance of being selected as the set
of prior probabilities.
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be smaller than 1 − 2a. It can be shown that for c classes, the upper bound on the
smallest prior probability is 1−a

c−1
and the lower bound is max{0, 1 − (c − 1)a}.

2.7.3 Choosing a Base Classifier for Ensembles

Classification accuracy is the most important criterion when choosing a classifier. In
addition, we may look at the classifier’s ability to deal with mixed types of features
(quantitative and qualitative), handle noise, outliers, missing values, and irrelevant
features and give interpretable solutions [179]. When choosing a classifier model
for building ensembles, the desiderata changes. The classifier should be sensitive to
changes in the data, initialization or training run. The classifiers chosen most often
in this context are the decision tree classifier and the MLP. They are both sensitive to
data resampling and feature subsampling which is a prerequisite for diversity in the
ensemble. MLP depends also on the initialization of the weights at the beginning of the
training run, while the decision tree classifier is sensitive to rotation of the space. Some
rule-based classifiers have been used within classifier ensembles. A notable example
is the RIPPER classifier proposed by Cohen [76] (JRip in WEKA). Ensembles of
LDC, QDC, Naı̈ve Bayes, and variants of SVM and k-nn have also been tried in spite
of the lesser sensitivity of these models to the various diversifying heuristics.

APPENDIX

2.A.1 MATLAB CODE FOR THE FISH DATA

1 %---------------------------------------------------------%
2 function [x,y,labels] = fish_data(grid_size,noise)
3 % --- generates the fish data set
4 % Input: ----------------------------------------
5 % grid_size: number of points on one side
6 % noise: percent label noise
7 % Output: --------------------------------------
8 % x,y: point coordinates
9 % labels: labels = 1 (black) or 2 (gray)

10

11 % Create the 2d data as all the points on a square grid
12 [X,Y] = meshgrid(1:grid_size,1:grid_size);
13 x = X(:)/grid_size; y = Y(:)/grid_size; % scale in [0,1]
14

15 % Generate the class labels
16 lab1 = x.ˆ3 - 2*x.*y + 1.6*y.ˆ2 < 0.4; % component 1
17 lab2 = -x.ˆ3 + 2*sin(x).*y + y < 0.7; % component 2
18 la = xor(lab1,lab2);
19
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20 if noise > 0
21 N = grid_sizeˆ2;
22 rp = randperm(N); % shuffle
23 to_change = rp(1:round(noise/100 * N));
24 la(to_change) = 1 - la(to_change); % flip labels
25 end
26

27 labels = 2 - la;
28 %---------------------------------------------------------%

2.A.2 MATLAB CODE FOR INDIVIDUAL CLASSIFIERS

2.A.2.1 Decision Tree

Function tree_build below is an example of a decision tree builder with the
following choices:

� Impurity criterion: Gini.
� Stopping criterion (leaf creating): 𝜒2.
� CART algorithm: all features are considered continuous-values and a threshold

is sought.

The function takes as its input the data, the labels, the number of classes, and the
threshold for the pre-pruning stopping criterion. The output is a decision tree T of
size K × 4, where K is the number of nodes, including the leaves. The nodes in T
are numbered as the respective row, from 1 to K. A row in T corresponding to a leaf
node appears as [a, 0, 0, 0], where a is the class label at this leaf. The root is the first
row of T . The root and all intermediate nodes have the format [b, c, d, e], where b is
the split feature index, c is the split threshold, d is the node number for the left child
(xb ≤ c) and e is the node number for the right child (xb > c).

Using the tree builder above, the decision tree classifier for the data in Example
2.6 is

T =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0.3655 2 3

1 0 0 0

2 1.6298 4 5

2 0 0 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
.

1 %-----------------------------------------------------------------%

2 function T = tree_build(data, labels, classN, chi2_threshold)

3 % --- train tree classifier
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4 if numel(unique(labels)) == 1 % all data are of the same class

5 T = [labels(1),0,0,0]; % make a leaf

6 else

7 [chosen_feature,threshold] = tree_select_feature(data,labels);

8 leftIndex = data(:,chosen_feature) <= threshold;

9 chi2 = tree_chi2(leftIndex,labels,classN);

10 if chi2 > chi2_threshold % accept the split

11 leftIndex = data(:,chosen_feature) <= threshold;

12 Tl = tree_build(data(leftIndex,:),labels(leftIndex),...

13 classN,chi2_threshold); % left subtree

14 Tr = tree_build(data(˜ leftIndex,:),labels(˜ leftIndex),...

15 classN,chi2_threshold); % right subtree

16 % merge the two trees

17 Tl(:,[3 4]) = Tl(:,[3 4]) + (Tl(:,[3 4]) > 0) * 1;

18 Tr(:,[3 4]) = Tr(:,[3 4]) + (Tr(:,[3 4]) > 0) * (size(Tl,1)+1);

19 T = [chosen_feature, threshold, 2, size(Tl,1)+2; Tl; Tr];

20 else % make a leaf

21 T = [mode(labels), 0, 0, 0];

22 end

23 end

24
25 %......................................................................

26 function [top_feature, top_thre] = tree_select_feature(data,labels)

27 % --- select the best feature

28 [n, m] = size(data);

29 i_G = Gini(labels); % Gini index of impurity at the parent node

30 [D, s] = deal(zeros(1, m)); % preallocate for speed

31 for j = 1 : m % check each feature

32 if numel(unique(data(:,j))) == 1 % the feature has only 1 value

33 D(j) = 0; s(j) = -999; % missing

34 else

35 Dsrt = sort(data(:,j)); % sort j-th feature

36 dde_i = zeros(1, n); % preallocate for speed

37 for i = 1 : n-1 % check the n-1 split points

38 sp = (Dsrt(i) + Dsrt(i+1)) / 2;

39 left = data(:,j) <= sp;

40 % Make sure that there are points in both children nodes

41 if sum(left) > 0 && sum(left) < n

42 i_GL = Gini(labels(left));i_GR = Gini(labels(˜ left));

43 dde_i(i) = i_G - mean(left)*i_GL - mean(˜ left)*i_GR;

44 else % one child node is empty

45 dde_i(i)=0;
46 end

47 end

48 [D(j), index_s] = max(dde_i); % best impurity reduction

49 s(j) = (Dsrt(index_s) + Dsrt(index_s+1)) / 2; % threshold

50 end

51 end

52 [˜ , top_feature] = max(D); top_thre = s(top_feature);
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53
54 %......................................................................

55 function chi2 = tree_chi2(left, labels, classN)

56 % --- calculate chiˆ2 statistic for the split of labels on "left"

57 n = numel(labels); chi2 = 0; n_L = sum(left);

58 for i = 1 : classN

59 n_i = sum(labels == i); n_iL = sum(labels(left) == i);

60 if n_i > 0 && n_L > 0 % add only for non-empty children nodes

61 chi2 = chi2 + (n * n_iL - n_i * n_L)ˆ2 /...

62 (2 * n_i * (n_L) * (n - n_L));

63 end

64 end

65
66 %......................................................................

67 function i_G = Gini(labels)

68 % --- calculate Gini index

69 for i = 1 : max(labels)

70 P(i) = mean(labels == i);

71 end

72 i_G = 1 - P * P';

73 %-----------------------------------------------------------------%

The function below is the classification part of the decision tree code. The output
consists of the labels of the supplied data using tree T trained through tree_build.

1 %---------------------------------------------------------%
2 function labels = tree_classify(T, test_data)
3 % classify test_data using the tree classifier T
4 for i = 1 : size(test_data,1)
5 index = 1; leaf = 0;
6 while leaf == 0,
7 if T(index,3) == 0, % leaf is found
8 labels(i) = T(index,1); leaf = 1;
9 else

10 if test_data(i,T(index,1)) <= T(index,2)
11 index = T(index,3); %left
12 else
13 index = T(index,4); %right
14 end
15 end
16 end
17 end
18 %---------------------------------------------------------%

The example below shows the use of the decision tree training and classification
functions. It builds a rather conservative decision tree for the fish data with 10% label
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(b) Regions of the decision
tree classifier

(a) Fish data

FIGURE 2.A.1 An example of (a) the fish data with 10% label noise and (b) the MATLAB
output from the TREE code. The points which the tree classifier labels as class “black dot” are
circled.

noise. The output is a scatter plot of the data set with circles as the points labeled by
the tree as “dots.” The results will differ from one run to the next because the noise
in the data set is randomly generated. An example of the fish data and the MATLAB
output is shown in Figure 2.A.1.

1 %---------------------------------------------------------%
2 % The TREE code
3 [x,y,labels] = fish_data(30,10);
4 T = tree_build([x y], labels, 2, 5);
5 la = tree_classify(T,[x y]);
6 ax = axes; hold on
7 scatter(ax,x,y,12,labels,'linewidth',3);
8 colormap gray, axis square off
9 plot(x(la==1),y(la==1),'bo','linewidth',3);

10 %---------------------------------------------------------%

2.A.2.2 Naı̈ve Bayes

Function naive_bayes_train trains a Naı̈ve Bayes classifier. The function returns
the classifier C, which can be used with naive_bayes_classify to label a data set.
The TREE code above can be re-used to try the NB classifier. Lines 4 and 5 should
be replaced with

1 %---------------------------------------------------------%
2 C = naive_bayes_train([x y], labels);
3 la = naive_bayes_classify(C,[x y]);
4 %---------------------------------------------------------%
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1 %---------------------------------------------------------%
2 function C = naive_bayes_train(data, labels)
3 % --- train parametric NB classifier
4 for i = 1:max(labels)
5 c_index = labels == i;
6 C(i).prior = mean(c_index);
7 C(i).mean = mean(data(c_index,:),1);
8 if sum(c_index) > 1 % class with 1 object
9 C(i).std = std(data(c_index,:));

10 else
11 C(i).std = zeros(1,size(data,2));
12 end
13 end
14 %---------------------------------------------------------%

1 %---------------------------------------------------------%
2 function labels = naive_bayes_classify(C, data)
3 % --- classify with the trained NB classifier
4 g = zeros(numel(C),size(data,1));
5 for i = 1:numel(C)
6 Ms = repmat(C(i).mean,size(data,1),1);
7 Ss = repmat(C(i).std,size(data,1),1);
8 t = 1./Ss .* exp(-(data - Ms).ˆ2 ./(2* Ss.ˆ2));
9 g(i,:) = prod(t') * C(i).prior;

10 end
11 [˜ ,labels] = max(g); labels = labels(:);
12 %---------------------------------------------------------%

2.A.2.3 Multi-Layer Perceptron

Function mlp_train below uses the error backpropagation algorithm to train an
MLP with one hidden layer. The number of nodes at the hidden layer is the input
parameter M, and the maximal number of epochs is the input parameter MaxEpochs.
The function returns the classifier C, which can be used with function mlp_classify
to label a data set. The TREE code above can be re-used to try the MLP classifier.
Lines 4 and 5 should be replaced with

1 %---------------------------------------------------------%
2 C = mlp_train([x y], labels,10,1000);
3 la = mlp_classify(C,[x y]);
4 %---------------------------------------------------------%

1 %---------------------------------------------------------%
2 function C = mlp_train(data, labels, M, MaxEpochs)
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3 % --- train an MLP with M hidden nodes
4 %
5 %* initialization
6 [n,m] = size(data); c = max(labels); % number of classes
7 % form c-component binary (target) vectors from the labels
8 bin_labZ = repmat(labels,1,c) == repmat(1:c,n,1);
9 % weights and biases input-hidden:

10 W1 = randn(M,m); B1 = randn(M,1);
11 % weights and biases hidden-output
12 W2 = randn(c,M); B2 = randn(c,1);
13 E = inf; % criterion value
14 t = 1; % epoch counter
15 eta = 0.1; % learning rate
16 epsilon = 0.0001; % termination criterion
17 %
18 %* normalization
19 mZ = mean(data); sZ = std(data);
20 data = (data - repmat(mZ,n,1))./repmat(sZ,n,1);
21 % store for the normalization of the testing data
22 C.means = mZ; C.std = sZ;
23 %
24 %* calculation
25 while E > epsilon && t <= MaxEpochs
26 % outputs of the hidden layer
27 oh = 1./(1 + exp(-[W1 B1] * [data ones(n,1)]'));
28 % outputs of the output layer
29 o = 1./(1+exp(-[W2 B2]*[oh; ones(1,n)]));
30 E = sum(sum((o'-bin_labZ).ˆ2));
31 t = t + 1; % increment epoch counter
32 del_o = (o-bin_labZ').*o.*(1-o);
33 del_h = ((del_o'*W2).*oh'.*(1-oh'))';
34 for i = 1:c % update W2 and B2
35 for j = 1:M
36 W2(i,j) = W2(i,j)-eta*del_o(i,:)*oh(j,:)';
37 end
38 B2(i) = B2(i)-eta*del_o(i,:)*ones(n,1);
39 end
40 for i = 1:M % update W1 and B1
41 for j = 1:m
42 W1(i,j) = W1(i,j)-eta*del_h(i,:)*data(:,j);
43 end
44 B1(i) = B1(i)-eta*del_h(i,:)*ones(n,1);
45 end
46 end
47 %
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48 %* store the output
49 C.W1 = W1; % weights input-hidden
50 C.W2 = W2; % weights hidden-output
51 C.B1 = B1; % bias input-hidden
52 C.B2 = B2; % bias hidden-output
53 C.oh = oh; % output of the hidden layer
54 %---------------------------------------------------------%

1 %------------------------------------------------------------%

2 function labels = mlp_classify(C,test_data)

3 % classify test_data using the MLP classifier C

4 AvailableLabels = 1:size(C.W2,1);

5 %* normalization

6 n = size(test_data,1);

7 test_data = (test_data - repmat(C.means,n,1))./repmat(C.std,n,1);

8 oh = 1./(1+exp(-[C.W1 C.B1]*[test_data ones(n,1)]'));

9 %* outputs of the hidden layer

10 o = 1./(1+exp(-[C.W2 C.B2]*[oh; ones(1,n)]));

11 %* outputs of the output layer

12 [˜ ,Index] = max(o);

13 labels = AvailableLabels(Index);

14 labels = labels(:);

15 %------------------------------------------------------------%

2.A.2.4 1-nn Classifier

Given below are three different MATLAB implementations of the 1-nn classifier.
The first one is included for its readability, and the latter two for their efficiency. The
results from the functions are identical.

1 %---------------------------------------------------------%
2 function labels = one_nn_classify(ref_set,ref_lab,test_data)
3 % classify test_data using the given labeled reference set
4 labels = zeros(size(test_data,1),1);
5 for i = 1:size(test_data,1)
6 x = repmat(test_data(i,:),size(ref_set,1),1) - ref_set;
7 [˜ ,ind] = min(sum(x.*x,2));
8 labels(i) = ref_lab(ind);
9 end

10 %---------------------------------------------------------%

1 %-----------------------------------------------------------%
2 function labels = one_nn_classify_1(ref_set,ref_lab,test_data)
3 % Courtesy of Cameron Gray
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4 % (does not require the Statistics toolbox)
5 [˜ ,A] = cellfun(@(x) min(sum(bsxfun(@minus,x,ref_set).ˆ2')),...
6 num2cell(test_data,2));
7 labels = ref_lab(A);
8 %-----------------------------------------------------------%

1 %---------------------------------------------------------%
2 function labels = one_nn_classify_2(ref_set,ref_lab,test_data)
3 % (requires the Statistics toolbox)
4 [˜ ,A] = pdist2(ref_set,test_data,'euclidean','Smallest',1);
5 labels = ref_lab(A);
6 %---------------------------------------------------------%



3
AN OVERVIEW OF THE FIELD

3.1 PHILOSOPHY

A classifier ensemble is sketched in Figure 3.1a. Several classifiers are employed
to make a classification decision about the object submitted at the input, and the
individual decisions are subsequently aggregated. The output of the ensemble is a
class label for the object.

Classifier ensembles are justly receiving increasing attention and accolade and
generating a wealth of research [53, 183, 311, 321, 335, 355, 357, 397, 425, 439].
Theoretical and empirical studies have demonstrated that an ensemble of classifiers
is typically more accurate than a single classifier. Research on classifier ensembles
permeate many strands of machine learning including streaming data [160, 326],
biometrics [312], concept drift, and incremental learning [119].

Intuitive as this concept may be, there is no rigorous definition of a classifier
ensemble. Figures 3.1b–d illustrate the uncertainty of the generic definition. Any
classifier ensemble is, in fact, a classifier (Figure 3.1b). We can think of the constituent
classifiers (called “base classifiers”) as fancy feature extractors, while the combiner
would be a simple classifier that aggregates the “fancy features.” On the other hand,
what is stopping us from proclaiming that a standard neural network classifier is
a classifier ensemble (Figure 3.1c)? The neurons at the penultimate layer can be
regarded as classifiers, whose decisions must be “deciphered” at the top layer. The
top layer itself can be thought of as a combiner. Further still, why cannot we say that
the features are actually some form of primitive classifiers while the classifier is a
sophisticated combiner (Figure 3.1d)?

Combining Pattern Classifiers: Methods and Algorithms, Second Edition. Ludmila I. Kuncheva.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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FIGURE 3.1 What is a classifier ensemble?

By combining classifiers we are aiming at an accurate classification decision which
is achievable using simple trainable classifiers. But is this a valid pursuit?

In her critical review article “Multiple classifier combination: lessons and next
steps” published in 2002 [183], Tin Ho writes:

Instead of looking for the best set of features and the best classifier, now we look for
the best set of classifiers and then the best combination method. One can imagine that
very soon we will be looking for the best set of combination methods and then the best
way to use them all. If we do not take the chance to review the fundamental problems
arising from this challenge, we are bound to be driven into such an infinite recurrence,
dragging along more and more complicated combination schemes and theories and
gradually losing sight of the original problem.

The lesson is that we should make the best use of the tools and methodologies that we
have at present, before setting off for new complicated designs. It is known that neural
network classifiers are “universal approximators,” which means that any classification
boundary, however complicated, can be approximated to any desired precision with a
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finite neural network. This knowledge, however, does not give us a method for setting
up or training such a network. It makes sense to compose a solution from manageable
building blocks, which is the idea behind combining classifiers.

Maybe the most natural reasons for considering classifier ensembles are our own
experiences in everyday decision making. Consulting several (hopefully independent)
sources is a common approach to making decisions, be they as mundane as choosing a
color for the living room walls, or as vital as picking a university to go to or accepting
experimental medical treatment. Day [84] reviews the evolution of the concept of
consensus in the context of electoral theory, traced back to the era of ancient Greek
city states and the Roman Senate. The majority criterion was established in 1356 for
the election of German kings. By 1450 it was adopted for the elections of the British
House of Commons, and by 1500, as a rule to be followed in the House itself. Rokach
[335] points at the wisdom of crowds as an argument in favor of classifier ensembles.
An example of crowd wisdom is the popular television game “Who Wants to be a
Millionaire”, where asking the audience to help with choosing the correct answer is
offered as a lifeline [311].

A decade ago, most papers on combining classifiers started with a justification
argument. We can safely assume that the research community’s view has moved
forward since then. The common understanding is that classifier ensembles work for
the following general reasons [95, 311] (Figure 3.2):

1. Statistical reasons. The empirical estimate of the classification performance is
a random value depending on the given data and the training algorithm. As
clever and stringent as the experimental protocol might be, there is always
uncertainty associated with the performance estimate.

Suppose we have a labeled data set Z and a number of different classifiers
with a good performance on Z. We can pick a single classifier as the solution,
running onto the risk of making a bad choice for the problem. For example,
suppose that we run the 1-nn classifier or a decision tree classifier for L different
subsets of features thereby obtaining L classifiers with zero resubstitution error.
Although these classifiers are indistinguishable with respect to their (resubsti-
tution) training error, they may have different generalization performances.

Classifier space
Good classifiers’ space

Optimal classifier

Ensemble Individual classifiers

Sub-optimal 
individual classifiers

STATISTICAL COMPUTATIONAL REPRESENTATIONAL

FIGURE 3.2 Three reasons for using classifier ensembles.
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Instead of picking just one classifier, a safer option would be to use them all
and average their outputs.

2. Computational reasons.

(a) Imperfect training algorithm. Suppose that the quality of the estimate of
the classification performance depends entirely upon the training algorithm.
Some types of algorithms, such as the error-backpropagation algorithm for
training neural networks, are only guaranteed to converge to a locally
optimal solution (the curves in the middle subplot in Figure 3.2 show
hypothetical trajectories for the classifiers during training). A combination
of the outputs of several diverse suboptimal classifiers may lead to a better
overall classifier.

(b) Too much data. Instead of trying to accommodate all data in a single training
algorithm, we may choose to train many classifiers on small “bites” of data
and aggregate their outputs.

(c) Small sample size. Re-sampling seems to be a good approach when the
sample size is small. Different data sets generated through re-sampling can
be used as training data for the base classifiers in an ensemble.

(d) Divide and conquer. Regardless of the amount of data, a classification prob-
lem may benefit from splitting into smaller and easier-to-handle problems.
A classifier is trained for each small problem and subsequently authorized
to make a decision when the data point falls into its remit.

(e) Data fusion. Sometimes data come from different sources, and the features
may be of different nature (distinct pattern representation). Instead of pool-
ing all features and trying to build a single classifier on the whole set, it may
be better to build separate classifiers on the different groups of features and
combine the classifier outputs. In emotion recognition, for example, data
may come from different modalities: sensor readings from the peripheral
nervous system, behavioral cues extracted from videos or voice record-
ings, image features describing facial expressions, and so on. Training a
single classifier using all features may be impractical, and the results are
likely to be worse than if different classifiers are trained on the different
modalities.

3. Representational reasons. A complex classification boundary (of any shape)
can be approximated with a desired precision by simple boundaries. Classifier
ensembles enable such an approach. For example, an ensemble of linear clas-
sifiers can approximate a highly nonlinear classification boundary. The right
subplot in Figure 3.2 illustrates the possibility of combining classifiers that
are not even in the “good” space, and still reaching a solution close to the
optimal one.

An improvement over the single best classifier or even on the average of the
individual accuracies is not generally guaranteed. However, the experimental work
published so far demonstrates the success of the ensemble approach to classification
in a variety of application domains [297].
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3.2 TWO EXAMPLES

3.2.1 The Wisdom of the “Classifier Crowd”

Consider the fish data set used in the previous chapter. Nine training data sets were
prepared using all data points on the grid and flipping 10% randomly chosen labels.
An MLP classifier was trained on each training data set. The classification boundaries
of the individual MLPs are shown in Figure 3.3. The classification errors with respect
to the true (undistorted) labels are shown underneath each plot. Each MLP had 10
hidden neurons whose weights were initialized with small random numbers. The
training was run for 500 epochs.

Taking the majority vote, the testing error is 5.84%. For comparison, the mean
of the individual errors is 8.56% and the minimum error is 6.44% (plot (i)). The
ensemble boundary is plotted in Figure 3.3j. In this example, the ensemble decision
is more accurate than the decision of any of the individual classifiers.

3.2.2 The Power of Divide-and-Conquer

The second example shows how the divide-and-conquer ensemble approach can boost
the accuracy of a classifier as simple as the largest prior classifier. This classifier
always assigns the label of the majority class. For the fish data set, the largest class
(grey dots) contains 1520 out of the 2500 grid points. If all points were labeled as
grey, the error rate would be 39.20%.

(c) 9.88%(b) 8.32%(a) 7.44%

(f) 7.76%(e) 9.72%(d) 7.64%

(i) 6.44%(h) 10.20%(g) 9.64%
(j) Majority vote classifier (error 5.84%)

FIGURE 3.3 (a)–(i) Classification boundaries of nine MLP classifiers trained on the fish
data set with 10% label noise. Displayed underneath each plot is the testing error. (j) Boundary
of the majority vote ensemble classifier.
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(b) noisy data and 10 regions(a) noise-free data

(c) divide-and-conquer regions (d) divide-and-conquer boundaries
(error 24.28%)

FIGURE 3.4 Classification boundaries of the divide-and-conquer ensemble consisting of 10
largest-prior classifiers.

The original (noise-free) fish data is shown in Figure 3.4a. Suppose that we divide
the space randomly into 10 regions, as shown in Figure 3.4b. The regions are depicted
over the training data set which includes 10% label noise. We subsequently apply
the largest prior classifier in each region. The resultant class pattern is displayed
in subplot Figure 3.4c and overlaid on the original set in subplot Figure 3.4d. The
ensemble labels a data point by first identifying the region where this point belongs
and then retrieving the label assigned to this region by the largest prior classifier. The
error rate of the divide-and-conquer ensemble in this example is 24.28%, which is
better than using the largest prior classifier on the whole data space.

This intuitive result can be easily proved. The beauty of the divide-and-conquer
ensemble strategy (called further “a classifier selection approach”) is that the result
does not depend critically on the way the data space is split into regions.
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3.3 STRUCTURE OF THE AREA

3.3.1 Terminology

Historically, pattern recognition and machine learning evolved with only little inter-
action, separated by each field’s strive for identity, the immaturity of electronic
communications, and an ocean. Nonetheless, they are arguably facets of the same
field and have been growing closer in the past decades [41, 252, 280]. Classifier
combination, like other topics of common interest for the two areas, suffers from
the curse of the tower of Babel: “Come, let us go down and confound their speech.”
Different terms for similar or identical concepts are still in operation:

feature = attribute
classifier = hypothesis = learner = inducer = generalizer = expert

data point = object = example = instance = case = observation
ensemble = team = pool = committee = meta learner

The series of annual International Workshops on Multiple Classifier Systems
(MCS), held since 2000, has played a pivotal role in organizing, systematizing,
and developing further the knowledge in the area of combining classifiers, as well
as unifying the terminology [338]. To keep terminology consistent throughout this
book, we will translate the material brought from the literature using the notions
shown on the left in the list above.

3.3.2 A Taxonomy of Classifier Ensemble Methods

Figure 3.5 shows four levels of questions which need to be answered in order to
construct a classifier ensemble.

Rokach [334] offers a comprehensive review of the classifier ensemble literature
and proposes a taxonomy with five dimensions, accommodating a wide spectrum
of existing classifier ensemble methods. Below we reproduce this taxonomy with
some simplifications, minor alterations, and including comments and interpretations
relevant to this book.

1. The combiner. (a) Some ensemble methods do not specify a combiner. (b) For
those methods that do, the combiner can be

i. Nontrainable. An example of this group is majority voting.

ii. Trainable. This group includes the weighted majority voting and the Naı̈ve
Bayes combiner, as well as the “classifier selection” approach where one
classifier in the ensemble is authorized to make the decision for a given
object.

iii. Meta classifier. The outputs of the individual classifiers are treated as inputs
into a new trainable classifier, which itself constitutes the combiner. This
approach is called “stacked generalization.” Constructing a training set for
the meta classifier is one of the main concerns of this combiner.
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Combiner

Features

Classifier 2Classifier 1 Classifier L…

Data set

A Combination level 

How are the individual inputs
combined? 

B  Classifier level

• Do we use same or different classifiers?
What base classifier is best: decision tree, NN or another?
How many classifiers are needed? Do we overproduce and select?
Should the L classifiers be trained together or incrementally? 

•
•
•

C Feature level

Shall we use all features or use a
bespoke subset for each classifier?
How do we select/extract such
subsets?    

D Data level

How can we manipulate the data submitted
for training to the base classifier so as to
ensure high diversity and high individual
accuracy?    

FIGURE 3.5 Four levels of questions in building classifier ensembles.

2. Building the ensemble. Can the base classifiers be trained independently or do
they need to be trained in a sequence? An example of the latter is AdaBoost,
where the training set of each added classifier depends upon the ensemble
created thus far.

3. Diversity. How is diversity introduced into the ensemble? The following routes
are proposed:

(a) Use different approaches/parameters in the training of the individual clas-
sifiers. For example, use different random initialization of the multi-layer
perceptron classifiers.

(b) Manipulate the training sample for each ensemble member; for example,
take a bootstrap sample from the training data or induce label noise, as in
the first example above.

(c) Choose different label targets. The idea is that each individual classifier
solves a different classification task. Example of a classifier ensemble
approach in this category is the Error Correcting Code (ECOC) ensembles,
where each classifier is solving a dichotomy, separating two groups of
classes.

(d) Partitioning the training set. Horizontal partitioning means that different
subsets (chunks, bites) of the training data are used as the training data for
each base classifier. Vertical partitioning means that the training sets for the
individual classifiers use different subsets of features.

(e) Different classifier models or hybrid ensembles.
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1. Combiner
i. Non-trainable output combiner

(b) Specified

(a)  Not specified

ii. Trainable output combiner

iii. Meta-classifier (always trained)

2. Building the ensemble

(a) Independent training (simultaneous)

(b) Dependent training (incremental growing)

3. Diversity
(b) Resampling the training data

(a) Training of the base classifiers (different parameters/initialization)

(c) Different label targets (e.g., ECOC ensembles)

(d) Partitioning of the training data i. Horizontal (bites of data)

ii. Vertical (feature subsets)

(e) Different base classifier models (heterogeneous ensemble)

4. Ensemble size
(b) Determined during training

(a) Fixed in advance

(c) Overproduce and select

5. Universality
(a) Specified base classifier model

(b) Any base classifier model

FIGURE 3.6 An ensemble taxonomy based on five dimensions (after Rokach [334]).

4. Ensemble size. How do we determine the number of classifiers in the ensemble?
Is the ensemble built by simultaneous training of a desired number of classifiers,
or iteratively, by adding/removing classifiers?

5. Universality (with respect to the base classifier). Some ensemble approaches
can be used with any classifier model while others are tied to a specific classifier
type. An example of a classifier-specific ensemble is the random forest, whose
hallmark is its base classifier—the random tree [50].

The taxonomy is shown in Figure 3.6. Any classifier ensemble methodology can
be described in terms of the five dimensions.

Ho [183] distinguishes between decision optimization and coverage optimization.
Decision optimization refers to methods for choosing and optimizing the combiner for
a fixed ensemble of base classifiers (answering the questions at level A in Figure 3.5).
The alternative—coverage optimization—refers to methods for creating diverse base
classifiers, assuming a fixed combiner (answering the questions at levels B, C, and
D). This de-coupling of the ensemble construction is deemed reasonable because it
reduces the complexity of the task [211]. This ensemble grouping is reflected in the
“combiner” dimension of the five-point taxonomy.
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◻◼ Example 3.1 Bagging as a taxonomy entry
Bagging ensembles [47] (explained in detail later) are created by drawing bootstrap
samples from the training data sets, training a classifier on each sample, and combin-
ing the label outputs through majority voting. If the individual outputs are continuous
valued, the combination is done by averaging. Figure 3.7 shows the answers to the
four sets of questions for the bagging ensemble methods.

Underneath these answers is the signature of bagging with respect to the five-
dimensional taxonomy in Figure 3.6, 1bi2a3b4a5b. The signature should be inter-
preted as follows

1bi Combiner. Specified. Nontrainable output combiner.
2a Building the ensemble. Independent training.
3b Diversity. Resampling the training data.
4a Ensemble size. Fixed in advance.
5b Universality. Any base classifier model.

BAGGING

A Combination level

How are the individual outputs combined? VOTING/AVERAGE

B Classifier level

� Do we use same or different classifiers? SAME CLASSIFIERS
� What base classifier is best? typically DECISION TREES but can be any
� How many classifiers are needed? typically 100+, chosen in advance
� Should the L classifiers be trained together or incrementally? TOGETHER

C Feature level

Shall we use all features or use a bespoke subset for each classifier?
ALL FEATURES

D Data level

How can we manipulate the data submitted for training to the base classifier so
as to ensure high diversity and high individual accuracy?
INDEPENDENT BOOTSTRAP SAMPLES

Signature in the 5-dimensional taxonomy: 1bi2a3b4a5b

FIGURE 3.7 Answers to the four sets of questions and the five-dimensional
taxonomy signature for bagging.

The five dimensions are not independent, nor are the four sets of questions in
Figure 3.5. For example, the ensemble size is related to the choice of a combiner.
Small ensembles of strong classifiers may need a sophisticated trained combiner
in order to improve on the single best ensemble member. On the other hand, large
ensembles perform equally well for a variety of simple combiners. It is interesting
to identify ensemble-creating approaches that share more than one property from the
ensemble taxonomy.
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3.3.3 Classifier Fusion and Classifier Selection

The above taxonomy draws upon the technological choices and heuristics in designing
a classifier ensemble. Alternatively, we can group classifier ensemble methods with
regard to the overall strategy that governs a specific design. Classifier fusion and
classifier selection are two such strategies.

In classifier fusion, each ensemble member is supposed to have knowledge of
the whole feature space. In classifier selection, each ensemble member is supposed
to know well a part of the feature space and be responsible for objects in this
part only. There are combination schemes lying in between the two pure strategies.
Such a scheme, for example, is taking the average of the outputs with coefficients
which depend on the input. The local competence of the classifiers determines their
weights in the combination formula. The fusion-selection concept can be likened
to competitive-cooperative ensembles, ensemble approach versus modular approach
[360] and multiple topology versus hybrid topology [247].

Figure 3.8 gives a view of classifier combination approaches in the space of
ensemble size and strength of the individual classifiers. The perfect classifier is
marked by the dot in the upper left corner. Imperfect but strong classifiers can be
combined with an ingenious combination rule to draw upon their diversity, however
small this might be. Indeed, nearly perfect classifiers will make a small number of
labeling mistakes, and an ensemble may improve on the individual accuracy if these
errors are not made synchronously.

Large ensemble size
Same classifier model 

L = 100+

Small ensemble size
Different classifier models 
L = 3 to 8
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Ideal classifierL = 1 Redundancy
No scope for diversity

Insufficient accuracy
Diversity must be engineered

Chance

How about 
here?

Classifier selection 

Trained combiners

Stacked generalization 

Classifier fusion 

Non-trained combiners

FIGURE 3.8 Summary of popular classifier combination approaches.
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The approach where 3–8 different classifier models are combined is often termed
stacked generalization [112, 420]. The term refers to the idea of stacking layers
of classifiers. The combiner is a classifier itself, built upon the outputs of the individual
classifiers. The individual outputs, be they class labels or degrees of support for
the classes, are treated as meta features or intermediate features [223].

Classifier selection is one of the preferred approaches for heterogeneous ensembles
with strong classifiers. Even if the competence regions of the classifiers are not very
precisely determined, the ensemble accuracy will not drop dramatically.

The bottom right corner of the diagram reflects the bulk of the classifier ensemble
research: large ensembles of diverse weak classifiers. Popular ensemble methods
in this group are bagging, AdaBoost, and random forest. Almost invariably, the
approaches in this quadrant fall in the classifier fusion group.

The top right quadrant corresponds to large ensembles with strong classifiers.
This is a waste of resource because there is no scope for diversity, and many of the
ensemble members will give identical output, regardless of how different the models
and their parameters may be.

The bottom left quadrant is more interesting. Is it possible to build a good ensemble
out of a small number of weak classifiers? The answer is yes! However, diversity
must be engineered in such a way that no accuracy is wasted, and the classifiers
complement one another. Such an ensemble must be able to rectify individual labeling
mistakes. While possible in theory (shown later under the name “pattern of success”),
this approach is not easy to bring to life. Instead of looking of ways to ensure
complementarity, it is much easier to generate a large number of classifiers and move
over to the bottom right quadrant.

How about the “middle ground?” Is there a gain in building classifier ensembles of
moderate sizes (20–50 classifiers)? Does it pay off to have a heterogeneous ensemble
with, say, two or three different classifier models? For example, consider an ensemble
with 30 classifiers, 10 of which are decision trees, another 10 are neural networks,
and the remaining 10 are Naı̈ve Bayes classifiers. In a way, this part of the diagram
calls for a joint consideration of the four levels of questions A–D in Figure 3.5. The
top left quadrant looks for answers mostly at levels A and B, while the bottom right
quadrant draws upon answers at level D and less so, C.

3.4 QUO VADIS?

3.4.1 Reinventing the Wheel?

We might pride ourselves for working in a relatively modern area of pattern recog-
nition and machine learning, but, in fact, combining classifiers was proposed over
50 years ago. Take for example the idea of viewing the classifier output as a new
feature vector. This could be traced back to Sebestyen [353] in his book Decision
Making Processes in Pattern Recognition published in 1962. Sebestyen proposes cas-
cade machines where the output of a classifier is fed as the input of the next classifier
in the sequence, and so on. In 1979, Dasarathy and Sheela [82] propose a compound
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classifier where the decision is switched between two different classifier models
depending on where the input is located. The book by Rastrigin and Erenstein [322]
published in 1981 contains what is now known as dynamic classifier selection [421].
Unfortunately, Rastrigin and Erenstein’s book only reached the Russian-speaking
reader, and so did the book by Barabash, published in 1983 [26], containing inter-
esting theoretical results about the majority vote for classifier combination. Zuev’s
study of 1987 [443], proposing a probabilistic model of a committee of classifiers,
suffered the same fate.

3.4.2 The Illusion of Progress?

How far have we gone? About a decade ago, a curious parallel between the views
of two experts in the field revealed how complex and prone to subjective bias the
answer to this question is. In his invited lecture at the 3rd International Workshop on
Multiple Classifier Systems, 2002, Ghosh proposed that [151]

“… our current understanding of ensemble-type multiclassifier systems is now quite
mature…”.

And yet, in an invited book chapter, also published in 2002, Ho states that [183]

“Many of the above questions are there because we do not yet have a scientific under-
standing of the classifier combination mechanisms.”

Ho proceeds to nominate the stochastic discrimination theory by Kleinberg [210] as
the only consistent and theoretically sound explanation of the success of classifier
ensembles, criticizing other theories as being incomplete and assumption bound.
However, as the practice invariably shows, ingenious heuristic developments are the
heart, the soul, and the engine of many branches of science and research.

In a provocative paper published in 2006, Hand scrutinizes the claims of progress
in classification methodologies [173]. He argues that much of the purported advance
offered by modern (complex) classification methodologies, including ensemble
approaches, may well be illusory.

An interesting visual representation of the typical evolution of any technology is
the Gartner, Inc.’s hype cycle.1 According to this model, shown in Figure 3.9, a peak
of hype is followed by a valley of disillusionment and cynicism, eventually reaching
what is called the “plateau of productivity” (asymptote of reality).

Is the evolution of the classifier ensemble field following this pattern? If so, where
are we and what lies ahead? Could Hand’s paper be heralding the downward slope
leading to the trough of disillusionment? As we shall see next, there is no evidence of
dramatical decrease of the visibility of the classifier ensemble field. On the other hand,
the application research is taking over, which suggests that we may be approaching
the plateau of productivity without experiencing a pronounced adverse dip.

1http://en.wikipedia.org/wiki/Hype_cycle

http://en.wikipedia.org/wiki/Hype_cycle
http://en.wikipedia.org/wiki/Hype_cycle
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FIGURE 3.9 Gartner’s hype cycle: a typical evolution pattern of a new technology.

3.4.3 A Bibliometric Snapshot

Thomson Reuters (formerly ISI) Web of Knowledge (WoK) has been described
as the premier research platform for information and the largest accessible cita-
tion database.2 It gives structured reference information gathered from journals and
conference proceedings. WoK’s searches are more restricted than those of Google
Scholar, hence the number of returned citations is significantly smaller. Acknowledg-
ing that no system is perfect, WoK was chosen for this example because of its high
reputation in the academic world and its reliability.

This example was carried out on January 4, 2013, so the publication and citation
records are correct as of this date. The search filter was designed to accommodate the
rich and evolving terminology of the classifier ensemble field:

"combining classifiers" OR
"classifier combination" OR
"classifier ensembles" OR
"ensemble of classifiers" OR
"combining multiple classifiers" OR
"committee of classifiers" OR
"classifier committee" OR
"committees of neural networks" OR
"consensus aggregation" OR
"mixture of experts" OR
"bagging predictors" OR
adaboost OR
(( "random subspace" OR "random forest"

OR "rotation forest" OR boosting)
AND "machine learning")

2http://wok.mimas.ac.uk/

http://wok.mimas.ac.uk/
http://wok.mimas.ac.uk/
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Curiously, the oldest paper returned by the search is Zuev’s 1986 study on a
probabilistic model of a committee of classifiers [443] with no citations. The next
oldest entry is Xu et al.’s seminal paper [425] with 864 citations. Notably, only this
paper was returned for 1992, while the total number of returns was 4693. Hence the
study was restricted to the period 1991–2012. The total number of papers covered
by WoK was also retrieved for each year. Figure 3.10 gives the proportion (per mil)
publications returned by the search ((returned/total) × 1000) over the 22-year span.
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FIGURE 3.10 Proportion (per mil) of published studies returned by the WoK search. The
circled points correspond to application-oriented papers.
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The journal signature of the most cited paper for the year is shown next to the
year point on the graph. The circled points correspond to application-oriented papers
while the noncircled ones correspond to more generic papers.

For example, the returned number of publications for 2004 was 1,519,596. Of
these, 265 responded to the chosen combination of keywords. The per mil value on
the graph for 2004 is therefore

265 × 1000
1, 519, 596

≈ 0.1744.

The most cited paper among the 265 papers for 2004 was the Viola and Jones face
detection algorithm [405] published in the International Journal of Computer Vision.
The journal signature (IJCV) is shown next to the data point on the graph. The point
is circled because the paper is devoted to an application of an ensemble technology.

The upward trend up to 2009 shows the growing interest in the subject of classifier
ensembles. Although the record for 2012 may be incomplete, the figure reveals a
small decline after the peak in 2009. Whether or not this is symptomatic of saturating
the area and starting a downward trend toward the “asymptote of reality” in Figure 3.9
remains to be seen.

Figure 3.11 plots the citation number returned by WoK of the most cited paper for
the respective year. (Note that Google Scholar may return a much higher number.)
Naturally, the citation counts of the more recent papers are low.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
um

be
r 

of
 c

ita
tio

ns

Time

[ML] Bagging predictors

[IEEE TPAMI] On combining classifiers

[ML] Random forests

1st edition of this book

[IJCV] Robust real-time face detection

FIGURE 3.11 Number of citations of the most cited paper returned by the WoK search in
the respective year. The circled points correspond to application-oriented papers. The search
was carried out on January 4, 2013.
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While the pattern of the citations graph may change tomorrow, the publication
curve in Figure 3.10 is stable. The bibliometric snapshot suggests that the area
of classifier ensembles has established itself and branched out to answer practical
challenges in image analysis, proteomics, biometrics, medicine, ecology, etc. The
fact that application-oriented papers hold the top citation places in recent years
does not mean that there are no new theoretical or generic results that will peak in
the future.



4
COMBINING LABEL OUTPUTS

How do we combine the outputs of the individual classifiers in the ensemble? Numer-
ous theoretical analyses [145,207,235,241,249,260,394], experimental comparisons
[109, 152, 222, 382, 434, 436], and reviews [392, 439] look for the answer to this
question.

4.1 TYPES OF CLASSIFIER OUTPUTS

Consider a classifier ensemble consisting of L classifiers in the set  = {D1,… , DL}
and a set of classes Ω = {𝜔1,… ,𝜔c}. Xu et al. [425] distinguish between three types
of classifier outputs:

� Class labels. (The abstract level.) Each classifier Di produces a class label
si ∈ Ω, i = 1,… , L. Thus, for any object x ∈ R

n to be classified, the L classifier
outputs define a vector s = [s1,… , sL]T ∈ ΩL. At the abstract level, there is no
information about the certainty of the guessed labels, nor are any alternative
labels suggested. By definition, any classifier is capable of producing a label for
x, so the abstract level is universal.

� Ranked class labels. The output of each Di is a subset of the class labels Ω,
ranked in order of plausibility [184, 391]. This type is especially suitable for
problems with a large number of classes, such as character, face, and speaker
recognition.

Combining Pattern Classifiers: Methods and Algorithms, Second Edition. Ludmila I. Kuncheva.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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� Numerical support for the classes. (The measurement level.) Each classifier Di
produces a c-dimensional vector [di,1,… , di,c]T . The value di, j represents the
support for the hypothesis that the vector x submitted for classification comes
from class 𝜔j. The outputs di, j are functions of the input x, but to simplify the
notation we will use just di, j instead of di, j(x). Without loss of generality, we
can assume that the outputs contain values between 0 and 1, spanning the
space [0, 1]c.

We add to this list one more output type:

� Oracle. The output of classifier Di for a given x is only known to be either
correct or wrong. We deliberately disregard the information as to which class
label has been assigned. The oracle output is artificial because we can only
apply it to a labeled data set. For a given data set Z, classifier Di produces an
output vector yi such that

yij =

{
1, if Di classifies object zj correctly,

0, otherwise.
(4.1)

4.2 A PROBABILISTIC FRAMEWORK FOR COMBINING
LABEL OUTPUTS

Consider class label outputs s = [s1,… , sL]T ∈ ΩL. We are interested in the
probability

P(𝜔k is the true class |s), k = 1,… , c,

denoted for short P(𝜔k|s). Assume that the classifiers give their decisions indepen-
dently, conditioned upon the class label. Conditional independence means that1

P(s1, s2,… , sL|𝜔k) = P(s1|𝜔k)P(s2|𝜔k)…P(sL|𝜔k).

Therefore we can write

P(𝜔k|s) =
P(𝜔k)

P(s)

L∏
i=1

P(si|𝜔k). (4.2)

Split the product into two parts depending on which classifiers suggested 𝜔k.
Denote by Ik

+ the set of indices of classifiers which suggested 𝜔k, and by Ik
− the set of

1However, this assumption precludes unconditional independence, that is,

P(s1, s2,… , sL) ≠ P(s1)P(s2)⋯P(sL).
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indices of classifiers which suggested another class label. The probability of interest
becomes

P(𝜔k|s) =
P(𝜔k)

P(s)
×

∏
i∈Ik

+

P(si|𝜔k) ×
∏
i∈Ik

−

P(si|𝜔k). (4.3)

This decomposition allows us to define the optimality conditions for several com-
bination rules [244]. Optimality is understood in a sense that the combiner guarantees
the minimum possible classification error.

4.3 MAJORITY VOTE

Never underestimate the power of stupid people in large groups.
—George Carlin

4.3.1 “Democracy” in Classifier Combination

Dictatorship and majority vote are perhaps the two oldest strategies for decision
making [84,159]. Three consensus patterns: unanimity, simple majority, and plurality,
are illustrated below. Assume that shapes correspond to class labels, and the decision
makers are the individual classifiers in the ensemble. The final label in all three
consensus patterns is

Unanimity

Simple majority △ △ △ △

Plurality △ △ △ × × ×

Assume that the label outputs of the classifiers are given as c-dimensional binary
vectors [di,1,… , di,c]T ∈ {0, 1}c, i = 1,… , L, where di, j = 1 if Di labels x in 𝜔j, and
0, otherwise. The plurality vote will return class 𝜔k if

L∑
i=1

di,k =
c

max
j=1

L∑
i=1

di, j. (4.4)

Ties are resolved arbitrarily. This rule is often called in the literature the majority
vote. It will indeed coincide with the simple majority (50% of the votes +1) in the
case of two classes (c = 2). Xu et al. [425] suggest a thresholded plurality vote. They
augment the set of class labels Ω with one more class, 𝜔c+1, for all objects for which
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MAJORITY (PLURALITY) VOTE COMBINER (MV)

Training: None

Operation: For each new object

1. Find the class labels s1,… , sL, assigned to this object by the L base classifiers.
2. Calculate the number of votes for each class 𝜔k, k = 1,… , c.

P(k) =
L∑

i=1

I(si,𝜔k),

where I(a, b) = 1 if a = b and 0 otherwise.
3. Assign label k∗ to the object, where

k∗ = arg
c

max
k=1

P(k).

Return the ensemble label of the new object.

FIGURE 4.1 Training and operation algorithm for the majority vote combiner.

the ensemble either fails to determine a class label with a sufficient confidence or
produces a tie. Thus the decision is

{
𝜔k, if

∑L
i=1 di,k ≥ 𝛼.L,

𝜔c+1, otherwise,
(4.5)

where 0 < 𝛼 ≤ 1. For the simple majority, we can pick 𝛼 to be 1
2
+ 𝜖, where 𝜖 is

arbitrarily small and 0 < 𝜖 <
1
L

. When 𝛼 = 1, Equation 4.5 becomes the unanimity
voting rule: a decision is made for a class label only if all decision makers agree on
that label; otherwise the ensemble refuses to decide and assigns label 𝜔c+1 to x. The
algorithm of the majority vote combiner is shown in Figure 4.1.

The plurality vote (Equation 4.4), called in a wide sense “the majority vote,” is the
most often used rule from the majority vote group [26, 28, 248, 250, 260, 343].

4.3.2 Accuracy of the Majority Vote

Assume that

� The number of classifiers, L, is odd.
� The probability for each classifier to give the correct class label is p for any

x ∈ R
n.
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TABLE 4.1 Tabulated Values of the Majority Vote Accuracy
of L Independent Classifiers with Individual Accuracy p

L = 3 L = 5 L = 7 L = 9

p = 0.6 0.6480 0.6826 0.7102 0.7334
p = 0.7 0.7840 0.8369 0.8740 0.9012
p = 0.8 0.8960 0.9421 0.9667 0.9804
p = 0.9 0.9720 0.9914 0.9973 0.9991

� The classifier outputs are independent, that is, for any set of classifiers A ⊆ ,
A = {Di1

,… , DiK
},

P(Di1
= si1

, … , DiK
= siK

)

= P(Di1
= si1

) ×⋯ × P(DiK
= siK

), (4.6)

where sij
is the label output of classifier Dij

.

According to Equation 4.4, the majority vote will give an accurate class label if
at least ⌊L∕2⌋ + 1 classifiers give correct answers (⌊a⌋ denotes the “floor,” which is
the nearest integer smaller than a).2 Then the accuracy of the ensemble is

Pmaj =
L∑

m=⌊L∕2⌋+1

(
L

m

)
pm(1 − p)L−m

. (4.7)

The probabilities of correct classification of the ensemble for p = 0.6, 0.7, 0.8, and
0.9 and L = 3, 5, 7, and 9, are displayed in Table 4.1.

The following result is also known as the Condorcet Jury Theorem (1785) [359]:

1. If p > 0.5, then Pmaj in Equation 4.7 is monotonically increasing and

Pmaj → 1 as L → ∞. (4.8)

2. If p < 0.5, then Pmaj in Equation 4.7 is monotonically decreasing and

Pmaj → 0 as L → ∞. (4.9)

3. If p = 0.5, then Pmaj = 0.5 for any L.

This result supports the intuition that we can expect improvement over the indi-
vidual accuracy p only when p is higher than 0.5. Lam and Suen [250] proceed to

2Notice that the majority (50% + 1) is necessary and sufficient in the case of two classes and is sufficient
but not necessary for c > 2. Thus the accuracy of an ensemble using plurality when c > 2 could be greater
than the majority vote accuracy.
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analyze the case of even L and the effect on the ensemble accuracy of adding or
removing classifiers.

Shapley and Grofman [359] note that the result is valid even for unequal p, provided
the distribution of the individual accuracies pi is symmetrical about the mean.

◻◼ Example 4.1 Majority and unanimity in medical diagnostics
An accepted practice in medicine is to confirm the diagnosis by several (supposedly
independent) tests. Lachenbruch [245] studies the unanimity and majority rules on a
sequence of three tests for HIV diagnosis.

Sensitivity and specificity are the two most important characteristics of a medical
test. Sensitivity (denoted by U) is the probability that the test procedure declares an
affected individual affected (probability of a true positive). Specificity (denoted by V)
is the probability that the test procedure declares an unaffected individual unaffected
(probability of a true negative).3

Denote by T the event “positive test result,” and by A, the event “the person is
affected by the disease.” Then U = P(T|A) and V = P(T|A), where the over-bar
denotes negation. We regard the test as an individual classifier with accuracy
p = U × P(A) + V × (1 − P(A)), where P(A) is the probability for the occurrence
of the disease among the examined individuals, or the prevalence of the disease. In
testing for HIV, a unanimous positive result from three tests is required to declare
the individual affected [245]. Since the tests are applied one at a time, encountering
the first negative result will cease the procedure. Another possible combination
is the majority vote which will stop if the first two readings agree or otherwise
take the third reading to resolve the tie. Table 4.2 shows the outcomes of the tests
and the overall decision for the unanimity and majority rules.

TABLE 4.2 Unanimity and Majority Schemes for Three
Independent Consecutive Tests

Unanimity sequences for decision (+): ⟨+ + +⟩
Unanimity sequences for decision (−): ⟨−⟩ ⟨+−⟩ ⟨+ + −⟩

Majority sequences for decision (+): ⟨++⟩ ⟨− + +⟩ ⟨+ − +⟩
Majority sequences for decision (−): ⟨−−⟩ ⟨− + −⟩ ⟨+ − −⟩

Assume that the three tests are applied independently and all have the same
sensitivity u and specificity v. Then the sensitivity and the specificity of the procedure
with the unanimity vote become

Uuna = u3,

Vuna = 1 − (1 − v)3
. (4.10)

3In social sciences, for example, sensitivity translates to “convicting the guilty” and specificity to “freeing
the innocent” [359].
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For the majority vote,

Umaj = u2 + 2u2(1 − u) = u2(3 − 2u),

Vmaj = v2(3 − 2v). (4.11)

For 0 < u < 1 and 0 < v < 1, by simple algebra we obtain

Uuna < u and Vuna > v, (4.12)

and

Umaj > u and Vmaj > v. (4.13)

Thus, there is a certain gain on both sensitivity and specificity if majority vote
is applied. Therefore, the combined accuracy Pmaj = U × P(A) + V × (1 − P(A)) is
also higher than the accuracy of a single test p = u × P(A) + v × (1 − P(A)). For the
unanimity rule, there is a substantial increase of specificity at the expense of decreased
sensitivity. To illustrate this point, consider the ELISA test used for diagnosing HIV.
According to Lachenbruch [245], this test has been reported to have sensitivity
u = 0.95 and specificity v = 0.99. Then

Uuna ≈ 0.8574 Vuna ≈ 1.0000

Umaj ≈ 0.9928 Vmaj ≈ 0.9997.

The sensitivity of the unanimity scheme is dangerously low. This means that the
chance of an affected individual being misdiagnosed as unaffected is above 14%.
There are different ways to remedy this. One possibility is to apply a more expensive
and more accurate second test in case ELISA gave a positive result, for example, the
Western Blot test, for which u = v = 0.99 [245].

4.3.3 Limits on the Majority Vote Accuracy: An Example

Let  = {D1, D2, D3} be an ensemble of three classifiers with the same individual
probability of correct classification p = 0.6. Suppose that there are 10 objects in a
hypothetical data set, and that each classifier correctly labels exactly six of them. Each
classifier output is recorded as correct (1) or wrong (0). Given these requirements, all
possible combinations of distributing 10 elements into the 8 combinations of outputs
of the three classifiers are shown in Table 4.3. The penultimate column of Table 4.3
shows the majority vote accuracy of each of the 28 possible combinations. It is
obtained as the proportion (out of 10 elements) of the sum of the entries in columns
“111,” “101,” “011,” and “110” (two or more correct votes). The rows of the table are
ordered by the majority vote accuracy. To clarify the entries in Table 4.3, consider
as an example the first row. The number 3 in the column under the heading “101,”
means that exactly three objects are correctly recognized by D1 and D3 (the first and
the third 1’s of the heading) and misclassified by D2 (the zero in the middle).
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TABLE 4.3 All Possible Combinations of Correct/Incorrect Classification of 10
Objects by Three Classifiers so that Each Classifier Recognizes Exactly Six Objects

No 111 101 011 001 110 100 010 000 Pmaj Pmaj − p

a b c d e f g h

Pattern of success

1 0 3 3 0 3 0 0 1 0.9 0.3

2 2 2 2 0 2 0 0 2 0.8 0.2
3 1 2 2 1 3 0 0 1 0.8 0.2
4 0 2 3 1 3 1 0 0 0.8 0.2
5 0 2 2 2 4 0 0 0 0.8 0.2
6 4 1 1 0 1 0 0 3 0.7 0.1
7 3 1 1 1 2 0 0 2 0.7 0.1
8 2 1 2 1 2 1 0 1 0.7 0.1
9 2 1 1 2 3 0 0 1 0.7 0.1

10 1 2 2 1 2 1 1 0 0.7 0.1
11 1 1 2 2 3 1 0 0 0.7 0.1
12 1 1 1 3 4 0 0 0 0.7 0.1

Identical classifiers

13 6 0 0 0 0 0 0 4 0.6 0.0

14 5 0 0 1 1 0 0 3 0.6 0.0
15 4 0 1 1 1 1 0 2 0.6 0.0
16 4 0 0 2 2 0 0 2 0.6 0.0
17 3 1 1 1 1 1 1 1 0.6 0.0
18 3 0 1 2 2 1 0 1 0.6 0.0
19 3 0 0 3 3 0 0 1 0.6 0.0
20 2 1 1 2 2 1 1 0 0.6 0.0
21 2 0 2 2 2 2 0 0 0.6 0.0
22 2 0 1 3 3 1 0 0 0.6 0.0
23 2 0 0 4 4 0 0 0 0.6 0.0
24 5 0 0 1 0 1 1 2 0.5 −0.1
25 4 0 0 2 1 1 1 1 0.5 −0.1
26 3 0 1 2 1 2 1 0 0.5 −0.1
27 3 0 0 3 2 1 1 0 0.5 −0.1

Pattern of failure

28 4 0 0 2 0 2 2 0 0.4 −0.2

The entries in the table are the number of occurrences of the specific binary output of the three classifiers
in the particular combination. The majority vote accuracy Pmaj and the improvement over the single
classifier, Pmaj − p are also shown. Three characteristic classifier ensembles are marked.

The table offers a few interesting facts:

� There is a case where the majority vote produces 90% correct classification.
Although purely hypothetical, this vote distribution is possible and offers a
dramatic increase over the individual rate p = 0.6.



MAJORITY VOTE 119

TABLE 4.4 The 2 × 2 Relationship Table with Probabilities

Dk correct (1) Dk wrong (0)

Di correct (1) a b
Di wrong (0) c d

Total, a + b + c + d = 1

� On the other hand, the majority vote is not guaranteed to do better than a single
member of the ensemble. The combination in the bottom row has a majority
vote accuracy of 0.4.

The best and the worst possible cases illustrated above are named “the pattern of
success” and the “pattern of failure” [241] and detailed next.

4.3.4 Patterns of Success and Failure

Consider two classifiers Di and Dk, and a 2 × 2 table of probabilities that summarizes
their combined outputs as in Table 4.4.

The three-classifier problem from the previous section can be visualized using two
pairwise tables as in Table 4.5. For this case,

a + b + c + d + e + f + g + h = 1. (4.14)

The probability of correct classification of the majority vote of the three classifiers
is (two or more correct)

Pmaj = a + b + c + e. (4.15)

All three classifiers have the same individual accuracy p, which brings in the
following three equations:

a + b + e + f = p, D1 correct;

a + c + e + g = p, D2 correct;

a + b + c + d = p, D3 correct.

(4.16)

Maximizing Pmaj in Equation 4.15 subject to conditions 4.14, 4.16 and a, b, c,
d, e, f , g, h ≥ 0, for p = 0.6, we obtain Pmaj = 0.9 with the pattern highlighted in

TABLE 4.5 The Probabilities in Two Two-way Tables
Illustrating a Three-Classifier Voting Ensemble

D3 correct (1) D3 wrong (0)
D2 → D2 →

D1 ↓ 1 0 D1 ↓ 1 0

1 a b 1 e f
0 c d 0 g h
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TABLE 4.6 The Pattern of Success

D3 correct (1) D3 wrong (0)
D2 → D2 →

D1 ↓ 1 0 D1 ↓ 1 0

1 0 𝛼 1 𝛼 0
0 𝛼 0 0 0 𝛾 = 1 − 3𝛼

Table 4.3: a = d = f = g = 0, b = c = e = 0.3, h = 0.1. This example, optimal for
three classifiers, indicates the possible characteristics of the best combination of L
classifiers. The “pattern of success” and “pattern of failure” defined later follow the
same intuition although we do not include a formal proof for their optimality.

Consider the pool  of L (odd) classifiers, each with accuracy p. For the majority
vote to give a correct answer we need ⌊L∕2⌋ + 1 or more of the classifiers to be correct.
Intuitively, the best improvement over the individual accuracy will be achieved when
exactly ⌊L∕2⌋ + 1 votes are correct. Any extra correct vote for the same x will be
wasted because it is not needed to give the correct class label. Correct votes which
participate in combinations not leading to a correct overall vote are also wasted. To
use the above idea, we make the following definition: The pattern of success is a
distribution of the L classifier outputs such that:

1. The probability of any combination of ⌊L∕2⌋ + 1 correct and ⌊L∕2⌋ incorrect
votes is 𝛼.

2. The probability of all L votes being incorrect is 𝛾 .

3. The probability of any other combination is zero.

For L = 3, the two-table expression of the pattern of success is shown in Table 4.6.
Here no votes are wasted; the only combinations that occur are where all classifiers

are incorrect or exactly ⌊L∕2⌋ + 1 are correct. To simplify notation, let l = ⌊L∕2⌋.
The probability of a correct majority vote (Pmaj) for the pattern of success is the sum
of the probabilities of each correct majority vote combination. Each such combination

has probability 𝛼. There are

(
L

l + 1

)
ways of having l + 1 correct out of L classifiers.

Therefore

Pmaj =

(
L

l + 1

)
𝛼. (4.17)

The pattern of success is only possible when Pmaj ≤ 1

𝛼 ≤
1(
L

l + 1

) . (4.18)
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To relate the individual accuracies p to 𝛼 and Pmaj, consider the following argu-
ment. In the pattern of success, if Di gives a correct vote, then the remaining L − 1

classifiers must give l correct votes. There are

(
L − 1

l

)
ways in which the remain-

ing L − 1 classifiers can give l correct votes, each with probability 𝛼. So the overall
accuracy p of Di is

p =

(
L − 1

l

)
𝛼. (4.19)

Expressing 𝛼 from Equation 4.19 and substituting in Equation 4.17 gives

Pmaj =
pL

l + 1
=

2pL

L + 1
. (4.20)

Feasible patterns of success have Pmaj ≤ 1, so Equation 4.20 requires

p ≤
L + 1

2L
. (4.21)

If p >
(L+1)

2L
, then Pmaj = 1 can be achieved, but there is an excess of correct

votes. The improvement over the individual p will not be as large as for the pattern
of success but the majority vote accuracy will be 1 anyway. The final formula for
Pmaj is

Pmaj = min
{

1,
2pL

L + 1

}
. (4.22)

The worst possible behavior of an ensemble of L classifiers each with accuracy p
is described by the pattern of failure.

The pattern of failure is a distribution of the L classifier outputs such that:

1. The probability of any combination of ⌊L∕2⌋ correct and ⌊L∕2⌋ + 1 incorrect
votes is 𝛽.

2. The probability of all L votes being correct is 𝛿.

3. The probability of any other combination is zero.

For L = 3, the two-table expression of the pattern of failure is shown in Table 4.7.
The worst scenario is when the correct votes are wasted, that is, grouped in

combinations of exactly l out of L correct (one short for the majority to be correct).
The excess of correct votes needed to make up the individual p are also wasted by all
the votes being correct together, while half of them plus one would suffice.
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TABLE 4.7 The Pattern of Failure

D3 correct (1) D3 wrong (0)
D2 → D2 →

D1 ↓ 1 0 D1 ↓ 1 0

1 𝛿 = 1 − 3𝛽 0 1 0 𝛽

0 0 𝛽 0 𝛽 0

The probability of a correct majority vote (Pmaj) is 𝛿. As there are

(
L

l

)
ways of

having l correct out of L classifiers, each with probability 𝛽, then

Pmaj = 𝛿 = 1 −

(
L

l

)
𝛽. (4.23)

If Di gives a correct vote, then either all the remaining classifiers are correct
(probability 𝛿) or exactly l − 1 are correct out of the L − 1 remaining classifiers. For

the second case there are

(
L − 1

l − 1

)
ways of getting this, each with probability 𝛽. To

get the overall accuracy p for classifier Di we sum the probabilities of the two cases:

p = 𝛿 +

(
L − 1

l − 1

)
𝛽. (4.24)

Combining Equations 4.23 and 4.24 gives

Pmaj =
pL − l

l + 1
=

(2p − 1)L + 1
L + 1

. (4.25)

For values of individual accuracy p > 0.5, the pattern of failure is always possible.
Matan [277] gives tight upper and lower bounds of the majority vote accuracy

in the case of unequal individual accuracies (see Appendix 4.A.1). Suppose that
classifier Di has accuracy pi, and {D1,… , DL} are arranged so that p1 ≤ p2 ⋯ ≤ pL.
Let k = l + 1 = (L + 1)∕2. Matan proves that

1. The upper bound of the majority vote accuracy of the ensemble is

maxPmaj = min{1,Σ(k),Σ(k − 1),… ,Σ(1)}, (4.26)

where

Σ(m) = 1
m

L−k+m∑
i=1

pi, m = 1,… , k. (4.27)
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2. The lower bound of the majority vote accuracy of the ensemble is

minPmaj = max{0, 𝜉(k), 𝜉(k − 1),… , 𝜉(1)}, (4.28)

where

𝜉(m) = 1
m

L∑
i=k−m+1

pi −
L − k

m
, m = 1,… , k. (4.29)

◻◼ Example 4.2 Matan’s limits on the majority vote accuracy
Let  = {D1,… , D5} be a set of classifiers with accuracies (0.56, 0.58, 0.60, 0.60,
0.62), respectively. To find the upper bound of the majority vote accuracy of this
ensemble, form the sums Σ(m) for m = 1, 2, 3:

Σ(1) = 0.56 + 0.58 + 0.60 = 1.74;

Σ(2) = 1
2

(0.56 + 0.58 + 0.60 + 0.60) = 1.17;

Σ(3) = 1
3

(0.56 + 0.58 + 0.60 + 0.60 + 0.62) = 0.99. (4.30)

Then

max Pmaj = min{1, 1.74, 1.17, 0.99} = 0.99. (4.31)

For the lower bound,

𝜉(1) = 0.60 + 0.60 + 0.62 − (5 − 3) = −0.18;

𝜉(2) = 1
2

(0.58 + 0.60 + 0.60 + 0.62) − 5 − 3
2

= 0.20;

𝜉(3) = 1
3

(0.56 + 0.58 + 0.60 + 0.60 + 0.62) − 5 − 3
3

= 0.32. (4.32)

Then

min Pmaj = max{0,−0.18, 0.20, 0.32} = 0.32. (4.33)

The range of possible results from the majority vote across  is wide, so without
more knowledge about how the classifiers are related to each other we can only
guess within this range. If we assume that the classifier outputs are independent,
then Pmaj = 0.67, which indicates that there is much more to be achieved from the
majority vote with dependent outputs.

Matan’s result leads to the pattern of success and the pattern of failure as the upper
and the lower bounds, respectively, for p1 = ⋯ = pL = p. Demirekler and Altincay
[87] and Ruta and Gabrys [343] give further insights into the behavior of the two
limit patterns.
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Hierarchical majority voting ensembles have been found to be very promising
[277,343,359]. There is a potential gain in accuracy but this has only been shown by
construction examples.

4.3.5 Optimality of the Majority Vote Combiner

Majority vote (plurality vote for more than two classes) is the optimal combiner when
the individual classifier accuracies are equal, the “leftover probability” is uniformly
distributed across the remaining classes, and the prior probabilities for the classes are
the same. The following theorem states this result more formally.

Theorem 4.1 Let  be an ensemble of L classifiers. Suppose that

1. The classifiers give their decisions independently, conditioned upon the class
label.

2. The individual classification accuracy is P(si = 𝜔k|𝜔k) = p for any classifier i
and class 𝜔k, and also for any data point in the feature space.

3. The probability for incorrect classification is equally distributed among the
remaining classes, that is P(si = 𝜔j|𝜔k) = 1−p

c−1
, for any i = 1,… , L, k, j =

1,… , c j ≠ k.

Then the majority vote is the optimal combination rule.

Proof. Substituting in the probabilistic framework defined in Equation 4.3,

P(𝜔k|s) =
P(𝜔k)

P(s)
×

∏
i∈Ik

+

p ×
∏
i∈Ik

−

1 − p

c − 1
(4.34)

=
P(𝜔k)

P(s)
×

∏
i∈Ik

+

p ×
∏
i∈Ik

−

1 − p

c − 1
×

∏
i∈Ik

+

1−p
c−1∏

i∈Ik
+

1−p
c−1

(4.35)

=
P(𝜔k)

P(s)
×

∏
i∈Ik

+

p(c − 1)
1 − p

×
L∏

i=1

1 − p

c − 1
. (4.36)

Notice that P(s) and the last product term in Equation 4.36 do not depend on the
class label. The prior probability, P(𝜔k), does depend on the class label but not on
the votes, so it can be designated as the class constant. Rearranging and taking the
logarithm,

log(P(𝜔k|s)) = log
(

(1 − p)L

P(s)(c − 1)L

)
+ log

(
P(𝜔k)

)
+ log

(
p(c − 1)

1 − p

)
× |Ik

+|, (4.37)
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where |.| denotes cardinality. Dividing by log
(

p(c−1)
1−p

)
and dropping all terms that

do not depend on the class label or the vote counts, we can create the following
class-support functions for the object x:

𝜇k(x) =
log

(
P(𝜔k)

)
log

(
p(c−1)

1−p

)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

class constant 𝜁 (𝜔k)

+ |Ik
+|. (4.38)

Note that |Ik
+| is the number of votes for 𝜔k. Choosing the class label corresponding

to the largest support function is equivalent to choosing the class most voted for,
subject to a constant term.

Interestingly, the standard majority vote rule does not include a class constant and is
still one of the most robust and accurate combiners for classifier ensembles. The class
constant may sway the vote, especially for highly unbalanced classes and uncertain
ensemble decisions where the number of votes for different classes are close. How-
ever, including the class constant will make majority vote a trainable combiner, which
defeats one of its main assets. To comply with the common interpretation, here we
adopt the standard majority vote formulation, whereby the class label is obtained by

𝜔 = argmax
k

|Ik
+|. (4.39)

4.4 WEIGHTED MAJORITY VOTE

The weighted majority vote is among the most intuitive and widely used combiners
[204,261]. It is the designated combination method derived from minimizing a bound
on the training error in AdaBoost [118, 133].

If the classifiers in the ensemble are not of identical accuracy, then it is reasonable
to attempt to give the more competent classifiers more power in making the final
decision. The label outputs can be represented as degrees of support for the classes
in the following way:

di, j =

{
1, if Di labels x in 𝜔j,

0, otherwise.
(4.40)

The class-support function for class 𝜔j obtained through weighted voting is

𝜇j(x) =
L∑

i=1

bidi, j, (4.41)

where bi is a coefficient for classifier Di. Thus, the value of the class-support function
4.41 will be the sum of the weights for those members of the ensemble whose output
for x is 𝜔j.
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4.4.1 Two Examples

◻◼ Example 4.3 Assigning weights to the classifiers
Consider an ensemble of three classifiers D1, D2, and D3 with accuracies 0.6, 0.6, and
0.7, respectively, and with independent oracle outputs. An accurate ensemble vote
will be obtained if any two classifiers are correct. The ensemble accuracy will be

Pmaj = 0.62 × 0.3 + 2 × 0.4 × 0.6 × 0.7 + 0.62 × 0.7 = 0.6960. (4.42)

Clearly, it will be better if we remove D1 and D2 and reduce the ensemble to
the single and more accurate classifier D3. We introduce weights or coefficients of
importance bi, i = 1, 2, 3, and rewrite Equation 4.4 as: choose class label 𝜔k if

L∑
i=1

bidi,k =
c

max
j=1

L∑
i=1

bidi, j. (4.43)

For convenience we normalize the weights so that

c∑
i=1

bj = 1. (4.44)

Assigning b1 = b2 = 0 and b3 = 1, we get rid of D1 and D2, leading to Pmaj =
p3 = 0.7. In fact, any set of weights which makes D3 the dominant classifier will yield
the same Pmaj, for example, b3 > 0.5 and any b1 and b2 satisfying Equation 4.44.

In the above example the weighted voting did not improve on the single best classifier
in the ensemble even for independent classifiers. The following example shows that, in
theory, the weighting might lead to a result better than both the single best member
of the ensemble and the simple majority.

◻◼ Example 4.4 Improving the accuracy by weighting
Consider an ensemble of five classifiers D1,… , D5 with accuracies (0.9, 0.9, 0.6, 0.6,
0.6).4 If the classifiers are independent, the majority vote accuracy (at least three out
of five correct votes) is

Pmaj = 3 × 0.92 × 0.4 × 0.6 + 0.63 + 6 × 0.9 × 0.1 × 0.62 × 0.4

≈ 0.877. (4.45)

Assume now that the weights given to the voters are (1/3, 1/3, 1/9, 1/9, 1/9). Then
the two more competent classifiers agreeing will be enough to make the decision
because the score for the class label they agree upon will become 2/3. If they disagree,
that is, one is correct and one is wrong, the vote of the ensemble will be decided by

4After [359].
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the majority of the remaining three classifiers. Then the accuracy for the weighted
voting will be

Pw
maj = 0.92 + 2 × 3 × 0.9 × 0.1 × 0.62 × 0.4 + 2 × 0.9 × 0.1 × 0.63

≈ 0.927. (4.46)

Again, any set of weights that satisfy Equation 4.44 and make the first two classi-
fiers prevail when they agree will lead to the same outcome.

4.4.2 Optimality of the Weighted Majority Vote Combiner

Here we use the probabilistic framework 4.2 to derive the optimality conditions for the
weighted majority vote. This type of combiner follows from relaxing the assumption
about equal individual accuracies. Hence the majority vote combiner is a special case
of the weighted majority combiner for equal individual accuracies.

Theorem 4.2 Let  be an ensemble of L classifiers. Suppose that

1. The classifiers give their decisions independently, conditioned upon the class
label.

2. The individual classification accuracy is P(si = 𝜔k|𝜔k) = pi for any class 𝜔k,
and also for any data point in the feature space.

3. The probability for incorrect classification is equally distributed among the
remaining classes, that is P(si = 𝜔j|𝜔k) = 1−pi

c−1
, for any i = 1,… , L, k, j =

1,… , c, j ≠ k.

Then the weighted majority vote is the optimal combination rule with weights

wi = log
(

pi

1 − pi

)
, 0 < pi < 1. (4.47)

Proof. Following the same derivation path as with the majority vote optimality,
Equation 4.3 becomes

P(𝜔k|s) =
P(𝜔k)

P(s)
×

∏
i∈Ik

+

pi ×
∏
i∈Ik

−

1 − pi

c − 1
(4.48)

=
P(𝜔k)

P(s)
×

∏
i∈Ik

+

pi(c − 1)

1 − pi
×

L∏
i=1

1 − pi

c − 1
(4.49)

= 1
P(s)

×
L∏

i=1

1 − pi

c − 1
× P(𝜔k) ×

∏
i∈Ik

+

pi(c − 1)

1 − pi
. (4.50)
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Then

log(P(𝜔k|s)) = log

(∏L
i=1(1 − pi)

P(s)(c − 1)L

)
+ log

(
P(𝜔k)

)
+

∑
i∈|Ik

+|
log

(
pi

1 − pi

)
+ |Ik

+| × log(c − 1). (4.51)

Dropping the first term, which will not influence the class decision, and expressing
the classifier weights as

wi = log
(

pi

1 − pi

)
, 0 < pi < 1,

will transform Equation 4.51 to

𝜇k(x) = log(P(𝜔k))
⏟⏞⏞⏞⏟⏞⏞⏞⏟

class constant 𝜁 (𝜔k)

+
∑

i∈|Ik
+|

wi + |Ik
+| × log(c − 1). (4.52)

If pi = p for all i = 1,… , L, Equation 4.52 reduces to the majority vote Equa-
tion 4.37.

Similar proofs have been derived independently by several researchers in different
fields of science such as democracy studies, pattern recognition, and automata theory.
The earliest reference according to Ref. [26, 359] was Pierce, 1961 [309] .

The algorithm of the weighted majority vote combiner is shown in Figure 4.2.
Note that the figure shows the conventional version of the algorithm which does not
include the class constant or the last term in Equation 4.52.

4.5 NAÏVE-BAYES COMBINER

Exploiting the independence assumption further leads to a combiner called the “inde-
pendence model” [385], “Naı̈ve Bayes (NB),” “simple Bayes,” [103] and even “idiot’s
Bayes” [107, 330]. Sometimes the first adjective is skipped and the combination
method is called just “Bayes combination.”

4.5.1 Optimality of the Naı̈ve Bayes Combiner

We can derive this combiner by finally dropping the assumption of equal individual
accuracies in the probabilistic framework 4.2.
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WEIGHTED MAJORITY VOTE COMBINER (WMV)

Training

1. Obtain an array E(N×L) with individual outputs of L classifiers for N objects. Entry
e(i, j) is the class label assigned by classifier Dj to object i. An array T(N×1) with the
true labels is also provided.

2. Estimate the accuracy of each base classifier Di, i = 1,… , L, as the proportion of
matches between column i of E and the the true labels T . Denote the estimates by p̂i.

3. Calculate the weights for the classifiers

vi = log
(

p̂i

1 − p̂i

)
, 0 < p̂i < 1, i = 1… , L.

Operation: For each new object

1. Find the class labels s1,… , sL assigned to this object by the L base classifiers.
2. Calculate the score for all classes

P(k) =
∑

si=𝜔k

vi, k = 1,… , c.

3. Assign label k∗ to the object, where

k∗ = arg
c

max
k=1

P(k).

Return the ensemble label of the new object.

FIGURE 4.2 Training and operation algorithm for the weighted majority vote combiner.

Theorem 4.3 Let  be an ensemble of L classifiers. Suppose that the classifiers
give their decisions independently, conditioned upon the class label. Then the Naı̈ve
Bayes combiner

max

{
P(𝜔k)

L∏
i=1

P(si|𝜔k)

}

is the optimal combination rule.

Proof. Think of P(si = 𝜔j|𝜔k) as the (j, k)th entry in a probabilistic confusion matrix
for classifier i. In this case, Equation (4.2) can be used directly:

P(𝜔k|s) =
P(𝜔k)

P(s)

L∏
i=1

P(si|𝜔k) . (4.53)
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Dropping P(s), which does not depend on the class label, the support for class 𝜔k is

𝜇k(x) = P(𝜔k)
L∏

i=1

P(si|𝜔k) . (4.54)

4.5.2 Implementation of the NB Combiner

The implementation of the NB method on a data set Z with cardinality N is explained
below. For each classifier Di, a c × c confusion matrix CMi is calculated by applying
Di to the training data set. The (k, s)th entry of this matrix, cmi

k,s, is the number of
elements of the data set whose true class label was 𝜔k and were assigned by Di to
class 𝜔s. Denote by Nk the number of elements of Z from class 𝜔k, k = 1,… , c.
Taking cmi

k,si
∕Nk to be an estimate of the probability P(si|𝜔k) and Nk∕N to be an

estimate of the prior probability for class 𝜔s, the support for class 𝜔k in Equation 4.54
can be expressed as

𝜇k(x) = 1

NL−1
k

L∏
i=1

cmi(k, si). (4.55)

◻◼ Example 4.5 NB combination
Consider a problem with L = 2 classifiers, D1 and D2, and c = 3 classes. Let the
number of training data points be N = 20. From these, let eight be from 𝜔1, nine
from 𝜔2, and three from 𝜔3. Suppose that the following confusion matrices have been
obtained for the two classifiers:

CM1 =
⎡⎢⎢⎢⎣

6 2 0

1 8 0

1 0 2

⎤⎥⎥⎥⎦ and CM2 =
⎡⎢⎢⎢⎣

4 3 1

3 5 1

0 0 3

⎤⎥⎥⎥⎦ . (4.56)

Assume D1(x) = s1 = 𝜔2 and D2(x) = s2 = 𝜔1 for the input x ∈ R
n. Using

Equation 4.55,

𝜇1(x) ∝ = 1
8
× 2 × 4 = 1;

𝜇2(x) ∝ 1
9
× 8 × 3 = 8

3
≈ 2.67;

𝜇3(x) ∝ 1
3
× 0 × 0 = 0. (4.57)

As 𝜇2(x) is the highest of the three values, the maximum membership rule will
label x in 𝜔2.

Notice that a zero as an estimate of P(si|𝜔k) automatically nullifies 𝜇k(x) regard-
less of the rest of the estimates. Titterington et al. [385] study the NB classifier for
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independent categorical features. They discuss several modifications of the estimates
to account for the possible zeros. For the NB combination, we can plug in Equa-
tion 4.54 in the following estimate:

P̂(si|𝜔k) =
cmi

k,si
+ 1

c

Nk + 1
, (4.58)

where Nk is the number of elements in the training set Z from class 𝜔k, k = 1,… , c.
The algorithm for the training and the operation of the NB combiner is shown in
Figure 4.3. MATLAB function nb_combiner is given in Appendix 4.A.2.

NAÏVE BAYES COMBINER (NB)

Training

1. Obtain an array E(N×L) with individual outputs of L classifiers for N objects. Entry
e(i, j) is the class label assigned by classifier Dj to object i. An array T(N×1) with the
true labels is also provided.

2. Find the number of objects in each class within T . Denote these numbers by
N1, N2,… , Nc.

3. For each classifier Di, i = 1,… , L, calculate a bespoke c × c confusion matrix Ci. The
(j1, j2)th entry is

Ci( j1, j2) =
K(j1, j2) + 1

c

Nj1
+ 1

,

where K(j1, j2) is the number of objects with true class label j1, labeled by classifier Di

in class j2.

Operation: For each new object

1. Find the class labels s1,… , sL assigned to this object by the L base classifiers.
2. For each class 𝜔k, k = 1,… , c

(a) Set P(k) = Nk

N
.

(b) For i = 1…L, calculate P(k) ← P(k) × Ci(k, si).

3. Assign label k∗ to the object, where

k∗ = arg
c

max
k=1

P(k).

Return the ensemble label of the new object.

FIGURE 4.3 Training and operation algorithm for the NB combiner.
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◻◼ Example 4.6 NB combination with a correction for zeros
Take the 20-point data set and the confusion matrices CM1 and CM2 from the
previous example. The estimates of the class-conditional pmfs for the values s1 = 𝜔2
and s2 = 𝜔1 are

𝜇1(x) ∝
N1

N
×
⎛⎜⎜⎝

c1
1,2 +

1
3

N1 + 1

⎞⎟⎟⎠
⎛⎜⎜⎝

c2
1,1 +

1
3

N1 + 1

⎞⎟⎟⎠
= 8

20
×

(
2 + 1

3

8 + 1

) (
4 + 1

3

8 + 1

)
≈ 0.050

𝜇2(x) ∝
N2

N
×
⎛⎜⎜⎝

c1
2,2 +

1
3

N2 + 1

⎞⎟⎟⎠
⎛⎜⎜⎝

c2
2,1 +

1
3

N2 + 1

⎞⎟⎟⎠
= 9

20
×

(
8 + 1

3

9 + 1

) (
3 + 1

3

9 + 1

)
≈ 0.125

𝜇3(x) ∝
N3

N
×
⎛⎜⎜⎝

c1
3,2 +

1
3

N3 + 1

⎞⎟⎟⎠
⎛⎜⎜⎝

c2
3,1 +

1
3

N3 + 1

⎞⎟⎟⎠
= 3

20
×

(
0 + 1

3

3 + 1

) (
0 + 1

3

3 + 1

)
≈ 0.001. (4.59)

Again, label 𝜔2 will be assigned to x. Notice that class 𝜔3 now has a small nonzero
support.

Despite the condescending names it has received, the NB combiner has been
acclaimed for its rigorous statistical underpinning and robustness. It has been found
to be surprisingly accurate and efficient in many experimental studies. The surprise
comes from the fact that the combined entities are seldom independent. Thus, the
independence assumption is nearly always violated, sometimes severely. However, it
turns out that the classifier performance is quite robust, even in the case of dependence.
Furthermore, attempts to amend the NB by including estimates of some dependencies
do not always pay off [103].

4.6 MULTINOMIAL METHODS

In this group of methods we estimate the posterior probabilities P(𝜔k|s) for all
k = 1,… , c and every combination of votes s ∈ ΩL. The highest posterior probability
determines the class label for s. Then, given an x ∈ R

n, first the labels s1,… , sL are
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assigned by the classifiers in the ensemble , and then the final label is retrieved for
s = [s1,… , sL]T .

“Behavior Knowledge Space” (BKS) is a fancy name for the multinomial com-
bination. The label vector s is regarded as an index to a cell in a look-up table (the
BKS table) [190]. The table is designed using a labeled data set Z. Each zj ∈ Z is
placed in the cell indexed by the s for that object. The number of elements in each
cell are tallied, and the most representative class label is selected for this cell. The
highest score corresponds to the highest estimated posterior probability P(𝜔k|s). Ties
are resolved arbitrarily. The empty cells are labeled in some appropriate way. For
example, we can choose a label at random or use the result from a majority vote
between the elements of s.

To have a reliable multinomial combiner, the data set should be large. The BKS
combination method is often overtrained: it works very well on the training data but
poorly on the testing data. Raudys [324,325] carried out a comprehensive analysis of
the problems and solutions related to the training of BKS (among other combiners)
for large and small sample sizes.

The BKS combiner is the optimal combiner for any dependencies between the
classifier outputs. The caveat here is that it is hardly possible to have reliable estimates
of the posterior probabilities for all possible cL output combinations s, even for the
most frequently occurring combinations.

◻◼ Example 4.7 BKS combination method
Consider a problem with three classifiers and two classes. Assume that D1, D2, and
D3 produce output (s1, s2, s3) = (𝜔2,𝜔1,𝜔2). Suppose that there are 100 objects in
Z for which this combination of labels occurred: 60 having label 𝜔1 and 40 having
label 𝜔2. Hence the table cell indexed by (𝜔2,𝜔1,𝜔2) will contain label 𝜔1 no matter
that the majority of the classifiers suggest otherwise.

From an implementation point of view, the BKS combiner can be regarded as the
nearest neighbor classifier in the space of the ensemble outputs over the training data
set. The concept of distance is replaced by exact match. If there are more than one
nearest neighbors (exact matches) in the training set, the labels of the matches are
tallied, and the label of the largest class representation is assigned. The algorithm is
shown in Figure 4.4.

◻◼ Example 4.8 BKS combiner for the fish data
A MATLAB function bks_combiner implementing the algorithm in Figure 4.4 is
given in Appendix 4.A.2. A MATLAB script which uses the function to label the
fish data is also provided. Note that the script needs function fish_data, given in
Appendix 2.A.1.

Fifty random linear classifiers were generated in the data space. The grid space
was scaled to the unit square. To generate a linear classifier, a random point P(p1, p2)
was selected within the square (not necessarily a node on the grid). Two random
numbers were drawn from a standard normal distribution, to be used as coefficients
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BEHAVIOR KNOWLEDGE SPACE (BKS) COMBINER

Training

1. Obtain a reference array E(N×L) with individual outputs of L classifiers for N objects.
Entry e(i, j) is the class label assigned by classifier Dj to object i. An array T(N×1) with
the true labels is also provided.

2. Find the prevalent class label within T , say 𝜔p.

Operation: For each new object

1. Find the class labels assigned to this object by the L base classifiers and place them in a
vector row r.

2. Compare r with each row of the reference array. Record in a set S the labels of the
objects whose rows match r.

3. If there is no match (S = ∅), assign label 𝜔p to the new object. Otherwise, assign the
prevalent class label within S. If there is a label tie, choose at random among the tied
classes.

Return the ensemble label of the new object.

FIGURE 4.4 Operation algorithm for the BKS combiner for a given reference ensemble
with labeled data and a set of new objects to be labeled by the ensemble.

a and b in the line equation ax + by + c = 0. Then the constant c was calculated so
that P lies on the line: c = −ap1 − bp2.

BKS has been applied to combine the outputs of the 50 classifiers. Figure 4.5 shows
the classifier boundaries and the regions labeled as the fish (class black dots) by the
ensemble with three levels of noise: 0%, 20%, and 35%. The accuracy displayed as
the plot title is calculated with respect to the original (noise-free) class labels.

The accuracy of the BKS combiner is very high, even for large amount of label
noise. The real problem with this combiner comes when the testing data evokes

(c) Label noise 35%(b) Label noise 20%(a) No label noise

BKS accuracy 0.7648BKS accuracy 0.8948BKS accuracy 0.9468

FIGURE 4.5 BKS classifier combiner for ensembles with L = 50 random linear classifiers
for the fish data, with different amount of label noise.
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TABLE 4.8 Scopes of Optimality (Denoted by a Black Square) and the Number of
Tunable Parameters of the Four Combiners for a Problem with c Classes and an
Ensemble of L Classifiers

Combiner 1 2 3 4 Number of parameters

Majority vote (not trained) ■ – – – none (requires equal priors for the classes)
Weighted majority vote ■ ■ – – L + c
Naı̈ve Bayes ■ ■ ■ – L ∗ c2 + c
BKS ■ ■ ■ ■ cL

Column headings:
1. Equal p
2. Classifier-specific pi
3. Full confusion matrix
4. Independence is not required

ensemble outputs which do not appear in the reference ensemble. If the reference
data is sufficiently representative, unmatched outputs will be relatively rare. Our
implementation of the BKS combiner does not look beyond the exact match. It is
possible to combat the brittleness of the method by considering distances between
the (nominal) label vectors.

4.7 COMPARISON OF COMBINATION METHODS FOR
LABEL OUTPUTS

Table 4.8 shows the optimality scopes and the number of tunable parameters for each
combiner.

In practice, the success of a particular combiner will depend partly on the validity
of the assumptions and partly on the availability of sufficient data to make reliable
estimates of the parameters.

The optimality of the combiners is asymptotic, and holds for sample size approach-
ing infinity. For finite sample sizes, the accuracy of the estimates of the parameters
may be the primary concern. A combiner with fewer tunable parameters may be
preferable even though its optimality assumption does not hold.

◻◼ Example 4.9 Label output combiners for the fish data set
Consider the following experiment. Fifty linear classifiers were randomly generated
in the grid space of the fish data set. An example of 50 linear boundaries is shown in
Figure 4.6a.

The labels of the two regions for each linear classifier were assigned randomly.
The accuracy of the classifier was evaluated. Note that the accuracy estimate is
exact because we have all possible data points (nodes on the grid). If the accuracy
was less than 50%, the regions were swapped over. Knowing the exact value of the
classification accuracy eliminates the estimation error. Thus the only source of error
in the ensemble error estimate came from the assumptions being incorrect.
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(a) Fish data set with 50 linear classifiers (b) Regions for the not-trained MV

(c) Regions for the NB combiner (d) Regions for the BKS combiner

FIGURE 4.6 A random linear ensemble for the fish data set.

The shaded regions in plots (b), (c), and (d) in Figure 4.6b,c,d show the ensemble
classification regions for class “black dots” for three combination rules: the majority
vote (Equation 4.39), the NB combiner (Equation 4.54) with the correction for zeros,
and the BKS combiner. The individual and ensemble accuracies are detailed in
Table 4.9.

Two hundred runs were carried out with different random “bunch of straws” (50
random classifiers) thrown in the unit square. Table 4.9 shows the average accura-
cies together with the standard deviations. The accuracies are ranked as expected
for the 200-run experiment. Progressively alleviating the assumption of equal indi-
vidual accuracies pays off. Weighted majority vote is better than the majority vote,
and NB is better than both. BKS is always the best combiner because there is no
parameter estimation error. However, this ranking is not guaranteed. Violation of the
assumptions may affect the ensemble accuracy to various degrees, and disturb the
ranking.
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TABLE 4.9 Classification Accuracies in Percentage of the Individual and Ensemble
Classifiers for Different Label Combiners

Classifier/ensemble Example Average of 200 runs ± 𝜎

Largest prior classifier 64.48 64.48± 0.00
Average individual classifier 59.76 59.91± 0.81

Majority vote (not trained) a70.60 68.53± 2.69
Weighted majority 68.84 69.63± 1.91
Naı̈ve Bayes a82.92 75.21± 2.85
BKS a95.72 94.42± 1.00

aPlot appears in Figure 4.6.

APPENDIX

4.A.1 MATAN’S PROOF FOR THE LIMITS ON THE MAJORITY
VOTE ACCURACY

Here we give a sketch of the proof as offered in Ref. [277].

Theorem 4.A.1 Given is a classifier ensemble  = {D1,… , DL}. Suppose that
classifiers Di have accuracies pi, i = 1,… , L, and are arranged so that p1 ≤ p2 ⋯ ≤

pL. Let k = l + 1 = (L + 1)∕2. Then

1. The upper bound of the majority vote accuracy of the ensemble is

maxPmaj = min{1,Σ(k),Σ(k − 1),… ,Σ(1)}, (4.A.1)

where

Σ(m) = 1
m

L−k+m∑
i=1

pi, m = 1,… , k. (4.A.2)

2. The lower bound of the majority vote accuracy of the ensemble is

minPmaj = max{0, 𝜉(k), 𝜉(k − 1),… , 𝜉(1)}, (4.A.3)

where

𝜉(m) = 1
m

L∑
i=k−m+1

pi −
L − k

m
, m = 1,… , k. (4.A.4)

Proof (sketch).
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Upper Bound. The accuracy pi is the average accuracy of Di across the whole
feature space R

n and can be written as

pi = ∫R
n
i(x)p(x)dx, (4.A.5)

where i is an indicator function for classifier Di, defined as

i(x) =

{
1, if Di recognizes correctly x,

0, otherwise,
(4.A.6)

and p(x) is the probability density function of x. The majority vote accuracy is the
probability of having k or more correct votes, averaged over the feature space R

n.

Pmaj = ∫∑
i(x)≥k

p(x)dx. (4.A.7)

First we note that Pmaj ≤ 1 and then derive a series of inequalities for Pmaj. For any
x where the majority vote is correct, at least k of the classifiers are correct. Thus,

L∑
i=1

pi =
L∑

i=1
∫R

n
i(x)p(x) dx =

∫R
n

L∑
i=1

i(x)p(x) dx

≥
∫∑

i(x)≥k
kp(x)dx = kPmaj. (4.A.8)

Then

Pmaj ≤
1
k

L∑
i=1

pi. (4.A.9)

Let us now remove the most accurate member of the ensemble, DL, and consider the
remaining L − 1 classifiers:

L−1∑
i=1

pi =
L−1∑
i=1

∫R
n
i(x)p(x) dx. (4.A.10)

For each point x ∈ R
n where the majority vote (using the whole ensemble) has

been correct, that is,
∑

i(x) ≥ k, there are now at least k − 1 correct individual
votes. Thus,

L−1∑
i=1

pi = ∫R
n

L−1∑
i=1

i(x)p(x) dx,

≥
∫∑L

i=1 i(x)≥k
(k − 1)p(x) dx = (k − 1)Pmaj. (4.A.11)
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Then

Pmaj ≤
1

k − 1

L−1∑
i=1

pi. (4.A.12)

Similarly, by dropping from the remaining set the most accurate classifier at a time,
we can derive the series of inequalities (Equation 4.A.1). Note that we can remove
any classifier from the ensemble at a time, not just the most accurate one, and arrive
at a similar inequality. Take for example the step where we remove DL. The choice
of the most accurate classifier is dictated by the fact that the remaining ensemble of
L − 1 classifiers will have the smallest sum of the individual accuracies. So as Pmaj

is less than 1
2

∑L−1
i=1 pi, it will be less than any other sum involving L − 1 classifiers

which includes pL and excludes a smaller pi from the summation.
The next step is to show that the upper bound is achievable. Matan suggests to use

induction on both L and k for that [277].

Lower Bound. To calculate the lower bound, Matan proposes to invert the concept,
and look again for the upper bound but of (1 − Pmaj).

4.A.2 SELECTED MATLAB CODE

1 %-------------------------------------------------------------------%
2 function oul = nb_combiner(otl,ree,rel)
3 % --- Naive Bayes (NB) combiner for label outputs
4 % Input: ----------------------------------------
5 % otl: outputs to label
6 % = array N(objects)-by-L(classifiers)
7 % entry (i,j) is the label of object i
8 % by classifier j (integer labels)
9 % ree: reference ensemble

10 % = array M(objects)-by-L(classifiers)
11 % entry (i,j) is the label of object i
12 % by classifier j (integer labels)
13 % rel: reference labels
14 % = array M(objects)-by-1
15 % true labels (integers)
16 % Output: --------------------------------------
17 % oul: output labels
18 % = array N(objects)-by-1
19 % assigned labels (integers)
20

21 % Training --------------------------------------
22 c = max(rel); % number of classes, assuming that the
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23 % class labels are integers 1,2,3,...,c
24 L = size(ree,2); % number of classifiers
25

26 for i = 1:c
27 cN(i) = sum(rel == i); % class counts
28 end
29

30 for i = 1:L
31 % cross-tabulate the classes to find the
32 % confusion matrices
33 for j1 = 1:c
34 for j2 = 1:c
35 CM(i).cm(j1,j2) = (sum(rel == j1 & ree(:,i) ...
36 == j2) + 1/c) / (cN(j1) + 1);
37 % correction for zeros included
38 end
39 end
40 end
41

42 % Operation -------------------------------------
43 N = size(otl,1);
44 oul = zeros(N,1); % pre-allocate for speed
45 for i = 1:N
46 P = cN/numel(rel);
47 for j = 1:c % calculate the score for each class
48 for k = 1:L
49 P(j) = P(j) * CM(k).cm(j,otl(i,k));
50 end
51 end
52 [~,oul(i)] = max(P);
53 end
54 %-------------------------------------------------------------------%

1 %-------------------------------------------------------------------%
2 function oul = bks_combiner(otl,ree,rel)
3 % --- BKS combiner for label outputs
4 % Input: ----------------------------------------
5 % otl: outputs to label
6 % = array N(objects)-by-L(classifiers)
7 % entry (i,j) is the label of object i
8 % by classifier j (integer labels)
9 % ree: reference ensemble

10 % = array M(objects)-by-L(classifiers)
11 % entry (i,j) is the label of object i
12 % by classifier j (integer labels)
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13 % rel: reference labels
14 % = array M(objects)-by-1
15 % true labels (integers)
16 % Output: --------------------------------------
17 % oul: output labels
18 % = array N(objects)-by-1
19 % assigned labels (integers)
20

21 N = size(otl,1);
22 M = size(ree,1);
23 largest_class = mode(rel);
24 oul = zeros(N,1); % pre-allocate for speed
25 for i = 1:N
26 matches = sum(ree ~= repmat(otl(i,:),M,1),2) == 0;
27 if sum(matches)
28 oul(i) = mode(rel(matches));
29 else % there is no match in the reference
30 % ensemble output; use the largest prior
31 oul(i) = largest_class;
32 end
33 end
34 %-------------------------------------------------------------------%

An example of using the BKS combiner function is shown below. Note that, with
a minor edit of lines 31–35, the BKS function can be replaced by the NB combiner
function or any other combiner function.

1 %-------------------------------------------------------------------%
2 clear all, close all
3 clc
4

5 % Generate and plot the data
6 [~,~,labtrue] = fish_data(50,0);
7 [x,y,lb] = fish_data(50,20); figure, hold on
8 plot(x(lb == 1),y(lb == 1),'k.','markers',14)
9 plot(x(lb == 2),y(lb == 2),'k.','markers',14,...

10 'color',[0.87, 0.87, 0.87])
11 axis([0 1 0 1]) % cut the figure to the unit square
12 axis square off % equalize and remove the axes
13

14 % Generate and plot the ensemble of linear classifiers
15 L = 50; % ensemble size
16 N = numel(x); % number of data points
17 ensemble = zeros(N,L); % pre-allocate for speed
18 for i = 1:L
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19 p = rand(1,2); % random point in the unit square
20 w = randn(1,2); % random normal vector to the line
21 w0 = p * w'; % the free term (neg)
22 plot([0 1],[w0, (w0-w(1))]/w(2),'r-',...
23 'linewidth',1.4) % plot the linear boundary
24 plot(p(1),p(2),'r.','markersize',15)
25 pause(0.08)
26 t = 2 - ([x y] * w' - w0 > 0);
27 if mean(t == lb) < 0.5, t = 3-t; end % revert labels
28 ensemble(:,i) = t; % store output of classifier i
29 end
30 % Find and plot the BKS combiner output
31 output_bks = bks_combiner(ensemble,ensemble,lb);
32 accuracy_bks = mean(output_bks == labtrue);
33 plot(x(output_bks==1),y(output_bks==1),'bo','linewidth',1.5)
34 title(['BKS accuracy ',num2str(accuracy_bks)])
35 %-------------------------------------------------------------------%



5
COMBINING CONTINUOUS-VALUED
OUTPUTS

5.1 DECISION PROFILE

Consider the canonical model of a classifier illustrated in Figure 1.9. The degrees of
support for a given input x can be interpreted in different ways, the two most common
being confidences in the suggested labels and estimates of the posterior probabilities
for the classes.

Let x ∈ ℝn be a feature vector and Ω = {𝜔1,𝜔2,… ,𝜔c} be the set of class labels.
Each classifier Di in the ensemble  = {D1,… , DL} outputs c degrees of support.
Without loss of generality we can assume that all c degrees are in the interval [0, 1],
that is, Di : ℝn → [0, 1]c. Denote by di,j(x) the support that classifier Di gives to the
hypothesis that x comes from class 𝜔j. The larger the support, the more likely the
class label 𝜔j. The L classifier outputs for a particular input x can be organized in a
decision profile (DP(x)) as the matrix shown in Figure 5.1.

The methods described in this chapter use DP(x) to find the overall support for each
class, and subsequently label the input x in the class with the largest support. There are
two general approaches to this task. First, we can use the knowledge that the values in
column j are the individual supports for class 𝜔j and derive an overall support value
for that class. Simple algebraic expressions, such as average or product, can be used
for this. Alternatively, we may ignore the context of DP(x) and treat the values di,j(x)
as features in a new feature space, which we call the intermediate feature space. The
final decision is made by another classifier that takes the intermediate feature space as
input, and produces a class label (stacked generalization). The important question is

Combining Pattern Classifiers: Methods and Algorithms, Second Edition. Ludmila I. Kuncheva.
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DP(x) =

d1,1(x) d... 1 , j(x) d... 1,c(x)

...

...

di,1(x) d... i , j(x) d... i,c (x)

dL,1(x) d... L, j (x) d... L,c (x)

.

Output of classifier Di (x)

Support from classifiers D1 . . . DL for class ωj

(5.1)

FIGURE 5.1 Decision profile for an input x.

how we train such architectures to make sure that the increased complexity is justified
by a corresponding gain in accuracy.

5.2 HOW DO WE GET PROBABILITY OUTPUTS?

Calibrating the classifiers’ outputs is important, especially for heterogeneous ensem-
bles [31]. Some of the base classifiers described in Chapter 2 produce soft labels
right away. An example of such outputs is the discriminant scores of the linear dis-
criminant classifier (LDC). It is more convenient though if these degrees were in the
interval [0, 1], with 0 meaning no support and 1 meaning full support. We can simply
normalize the values so that ℝ is mapped to [0, 1]. In addition, to comply with the
probability context, we can scale the degrees of support so that their sum is one. The
standard solution to this problem is the softmax method [107]. Let g1(x),… , gc(x) be
the output of classifier D. Then the new support scores g′1(x),… , g′c(x), g′j(x) ∈ [0, 1],∑c

j=1 g′j(x) = 1, are obtained as

g′j (x) =
exp
{

gj(x)
}∑c

k=1 exp
{

gk(x)
} . (5.2)

It is desirable that g′j (x) are credible estimates of the probabilities for the classes given
the input x. Some ways to obtain continuous outputs as estimates of the posterior
probabilities P(𝜔j|x), j = 1,… , c, are detailed below.

5.2.1 Probabilities Based on Discriminant Scores

Consider the LDC and the quadratic discriminant classifiers. These classifiers are
optimal for normal class-conditional densities (a seldom valid but very useful
assumption). The discriminant function for class 𝜔i, denoted gi(x), is derived from
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logP(𝜔i)p(x|𝜔i) by dropping all the additive terms that do not depend on the class
label as shown by Equations 2.8, 2.9, 2.10, and 2.11.

For the LDC, we arrived at Equation 2.11:

gi(x) = log(P(𝜔i)) −
1
2
𝝁

T
i Σ

−1
𝝁i + 𝝁

T
i Σ

−1x = wi0 + wT
i x. (5.3)

Returning the dropped terms into the starting equation, we have

log(P(𝜔i)p(𝝁|𝜔i)) = log(P(𝜔i)) −
1
2

(x − 𝝁i)
TΣ−1(x − 𝝁i)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

gi(x)

−n
2
log(2𝜋) − 1

2
log(|Σ|). (5.4)

Denote by C the constant (possibly depending on x but not on i) absorbing all
dropped additive terms

C = −n
2
log(2𝜋) − 1

2
log(|Σ|). (5.5)

Then

P(𝜔j)p(x|𝜔j) = exp(C) exp{gj(x)}. (5.6)

The posterior probability for class 𝜔j for the given x is

P(𝜔j|x) =
P(𝜔j)p(x|𝜔j)

p(x)
(5.7)

=
exp(C) × exp

{
gj(x)
}∑c

k=1 exp(C) × exp
{

gk(x)
} =

exp
{

gj(x)
}∑c

k=1 exp
{

gk(x)
} , (5.8)

which is the softmax transform (Equation 5.2).
For a two-class problem, instead of comparing g1(x) with g2(x), we can form

a single discriminant function g(x) = g1(x) − g2(x), which we compare with the
threshold 0. In this case,

P(𝜔1|x) = 1
1 + exp {−g(x)}

(5.9)

and

P(𝜔2|x) = 1 − P(𝜔1|x) = 1
1 + exp {g(x)}

. (5.10)

This is also called the logistic link function [310].
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Alternatively, we can think of g(x) as a new feature, and estimate the two class-
conditional probability density functions (pdf), p(g(x)|𝜔1) and p(g(x)|𝜔2) in this new
one-dimensional space. The posterior probabilities are calculated from the Bayes
formula. The same approach can be extended to a c-class problem by estimating a
class-conditional pdf p(gj(x)|𝜔j) on gj(x), j = 1,… , c, and calculating subsequently
P(𝜔j|x).

Next, consider a neural network (NN) with c outputs, each corresponding to a
class. Denote the NN output by

(y1,… , yc) ∈ ℝc

and the target by

(t1,… , tc) ∈ {0, 1}c
.

The target for an object zj from the data set Z is typically a binary vector with 1 at
the position of the class label of zj and zeros elsewhere. It is known that, if trained to
optimize the squared error between the NN output and the target, in the asymptotic
case, the NN output yj will be an approximation of the posterior probability P(𝜔j|x),
j = 1,… , c [40, 330]. Wei et al. [414] argue that the theories about the approximation
are based on several assumptions that might be violated in practice: (i) that the
network is sufficiently complex to model the posterior distribution accurately, (ii)
that there are sufficient training data, and (iii) that the optimization routine is capable
of finding the global minimum of the error function. The typical transformation
which forms a probability distribution from (y1,… , yL) is the softmax transformation
(Equation 5.2) [107]. Wei et al. [414] suggest a histogram-based remapping function.
The parameters of this function are tuned separately from the NN training. In the
operation phase, the NN output is fed to the remapping function and calibrated to
give more adequate posterior probabilities.

◻◼ Example 5.1 SVM output calibration
Figure 5.2a shows a two-dimensional (2D) data set with two classes plotted with
different markers. Each class contains 3000 data points. A training set of 120 points
was randomly sampled. The training set is marked on the plot with thicker and brighter
markers. The SVM classifier was trained using this training data. The classification
boundary is shown on the scatterplot.

To examine how accurately the calibrated SVM output matches the posterior
probabilities, the whole data set of 6000 objects was fed to the trained SVM classifier
and the outputs were calibrated into posterior probabilities using Equation 5.10. Next,
a histogram with 100 bins was created and the 6000 probability estimates for class 1
were distributed in the respective bins. The true class labels of the objects were
recovered and used to calculate the probability for class 1 in each bin. Figure 5.2b
shows the nearly perfect correspondence between the SVM probabilities and the
probabilities calculated from the data labels.
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FIGURE 5.2 Calibrated output for the SVM classifier on a two-dimensional two-class
data set.

5.2.2 Probabilities Based on Counts: Laplace Estimator

Consider finding probability estimates from decision trees. Each leaf of the tree
defines a set of posterior probabilities. These are assigned to any point that reaches the
leaf. Provost and Domingos [314] analyze the reasons for the insufficient capability of
the standard decision tree classifiers to provide adequate estimates of the probabilities
and conclude that the very heuristics that help us build small and accurate trees are
responsible for that. Special amendments were proposed which led to the so-called
probability estimating trees (PETs). These trees still have high classification accuracy
but their main purpose is to give more accurate estimates of the posterior probabilities.

We calculate estimates of P(𝜔j|x), j = 1,… , c, as the class proportions of the
training data points that reached the leaf (the maximum likelihood (ML) estimates).
Let k1,… , kc be the number of training points from classes 𝜔1,… ,𝜔c, respectively,
at some leaf node t, and let K = k1 +⋯ + kc. The ML estimates are

P̂(𝜔j|x) =
kj

K
, j = 1,… , c. (5.11)

The problem is that when the total number of points, K, is small, the estimates of
these probabilities are unreliable. Besides, the tree-growing strategies try to make the
leaves as pure as possible. Thus, most probability estimates will be pushed toward 1
and 0 [430].

To remedy this, the Laplace estimate or Laplace correction can be applied [314,
430, 384]. The idea is to adjust the estimates so that they are less extreme. For c
classes, the Laplace estimate used in [314] is

P̂(𝜔j|x) =
kj + 1

K + c
. (5.12)

Zadrozny and Elkan [430] apply a different version of the Laplace estimate using
a parameter m which controls the degree of regularization of the estimate (called
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m-estimation). The idea is to smooth the posterior probability toward the (estimate
of the) prior probability for the class

P̂(𝜔j|x) =
kj + m × P̂(𝜔j)

K + m
. (5.13)

If m is large, then the estimate is close to the prior probability. If m = 0, then we have
the ML estimates and no regularization. Zadrozny and Elkan suggest that m should
be chosen so that m × P(𝜔j) ≈ 10 and also point out that practice has shown that the
estimate 5.13 is quite robust with respect to the choice of m.

Suppose that 𝜔∗ is the majority class at node t. Ting and Witten [384] propose the
following version of the Laplace estimator:

P̂(𝜔j|x) =
⎧⎪⎨⎪⎩

1 −
∑

l≠j kl+1

K+2
, if 𝜔j = 𝜔

∗ ,

(1 − P̂(𝜔∗|x)) × kj∑
l≠j kl

, otherwise.
(5.14)

The general consensus in the PET studies is that for good estimates of the posterior
probabilities, the tree should be grown without pruning, and a form of the Laplace
correction should be used for calculating the probabilities.

The same argument can be applied for smoothing the estimates of the k nearest
neighbor classifier (k-nn) discussed in Chapter 2. There are many weighted versions
of k-nn whereby the posterior probabilities are calculated using distances. While
the distance-weighted versions have been found to be asymptotically equivalent to
the nonweighted versions in terms of classification accuracy [24], there is no such
argument when class ranking is considered. It is possible that the estimates of the soft
k-nn versions are more useful for ranking than for labeling. A simple way to derive
P̂(𝜔j|x) from k-nn is to average the similarities between x and its nearest neighbors
from class 𝜔j. Let k be the number of neighbors, x(i) be the ith nearest neighbor of x,
and d(x, x(i)) be the distance between x and x(i). Then

P̂(𝜔j|x) =

∑
x(j)∈𝜔j

1
d(x,x(j))∑k

i=1
1

d(x,x(i))

. (5.15)

Albeit intuitive, these estimates are not guaranteed to be good approximations of the
posterior probabilities.

◻◼ Example 5.2 Laplace corrections and soft k-nn
Figure 5.3 shows a point in a 2D feature space (the cross, x) and its seven nearest
neighbors from 𝜔1 (open circles), 𝜔2 (bullets), and 𝜔3 (triangle).

The Euclidean distances between x and its neighbors are as follows:

x 1 2 3 4 5 6 7

Distance 1 1
√

2 2 2
√

2 2
√

2
√

13
Label 𝜔2 𝜔1 𝜔1 𝜔3 𝜔1 𝜔1 𝜔2
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FIGURE 5.3 A point in a two-dimensional feature space and its seven nearest neighbors
from 𝜔1 (open circles), 𝜔2 (bullets), and 𝜔3 (triangle).

TABLE 5.1 Probability Estimates for the Example in Figure 5.3 Using the
Laplace Corrections and Distance-based k-nn

Method 𝜇1(x) 𝜇2(x) 𝜇3(x)

ML 4

7
= 0.571 2

7
= 0.286 1

7
= 0.143

Standard Laplace [314] 5

10
= 0.500 3

10
= 0.300 2

10
= 0.200

m-estimation [430] 8

19
= 0.421 6

19
= 0.316 5

19
= 0.263

(m = 12, equiprobable classes)
Ting and Witten [384] 12

27
= 0.444 10

27
= 0.370 5

27
= 0.185

Distance based 0.576 0.290 0.134

The probability estimates 𝜇j(x), j = 1, 2, 3, using the Laplace corrections and
the distance-based formula are shown in Table 5.1. As seen in the table, all the
corrective modifications of the estimates bring them closer to one another compared
to the standard ML estimates, that is, the modifications smooth the estimates away
from the 0/1 bounds.

Accurate estimates are a sufficient but not a necessary condition for a high classifica-
tion accuracy. The final class label will be correctly assigned as long as the degree of
support for the correct class label exceeds the degrees for the other classes. Investing
effort into refining the probability estimates will be justified in problems with a large
number of classes c, where the ranking of the classes by their likelihood is more
important than identifying just one winning label. Examples of such tasks are person
identification, text categorization, and fraud detection.
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5.3 NONTRAINABLE (FIXED) COMBINATION RULES

5.3.1 A Generic Formulation

Simple fusion methods are the most obvious choice when constructing a multiple
classifier system [207, 237, 382, 394, 399]. A degree of support for class 𝜔j is
calculated from the L entries in the jth column of DP(x)

𝜇j(x) = 
(
d1,j(x),… dL,j(x)

)
, (5.16)

where  is a combination function. The class label of x is found as the index of the
maximum 𝜇j(x).  can be chosen in many different ways:

� Average
(Sum)

𝜇j(x) = 1
L

L∑
i=1

di,j(x). (5.17)

� Minimum/maximum/median combiner, for example,

𝜇j(x) = max
i

{di,j(x)}. (5.18)

� Trimmed mean combiner (competition jury). For a K% trimmed mean the L
degrees of support are sorted and K

2
% of the values are dropped on each side.

The overall support 𝜇j(x) is found as the mean of the remaining degrees of
support.

� Product combiner

𝜇j(x) =
L∏

i=1

di,j(x). (5.19)

AVERAGE COMBINER

Training: None

Operation: For each new object

1. Classify the new object x to find its decision profile DP(x), as in Equation 5.1.
2. Calculate the support for each class by

P(k) = 1
L

L∑
i=1

dj,i, k = 1,… , c.

3. Assign label k∗ to the object, where

k∗ = arg
c

max
k=1

P(k).

Return the ensemble label of the new object.

FIGURE 5.4 Training and operation algorithm for the average combiner.
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FIGURE 5.5 Operation of the average combiner.

Represented by the average combiner, the category of simple nontrainable
combiners is described in Figure 5.4, and illustrated diagrammatically in Figure 5.5.
These combiners are called nontrainable, because once the individual classifiers are
trained, their outputs can be fused to produce an ensemble decision, without any
further training.

◻◼ Example 5.3 Simple nontrainable combiners
The following example helps to clarify simple combiners. Let c = 3 and L = 5.
Assume that for a certain x

DP(x) =

⎡⎢⎢⎢⎢⎣
0.1 0.5 0.4
0.0 0.0 1.0
0.4 0.3 0.4
0.2 0.7 0.1
0.1 0.8 0.2

⎤⎥⎥⎥⎥⎦
. (5.20)

Applying the simple combiners column wise, we obtain:

Combiner 𝜇1(x) 𝜇2(x) 𝜇3(x)

Average 0.16 0.46 0.42
Minimum 0.00 0.00 0.10
Maximum 0.40 0.80 1.00
Median 0.10 0.50 0.40
40% trimmed mean 0.13 0.50 0.33
Product 0.00 0.00 0.0032
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Note that we do not require that di,j(x) for classifier Di sum up to one. We only
assume that they are measured in the same units. If we take the class with the maxi-
mum support to be the class label of x, the minimum, maximum, and product will label
x in class 𝜔3, whereas the average, the median, and the trimmed mean will put x in
class 𝜔2.

5.3.2 Equivalence of Simple Combination Rules

5.3.2.1 Equivalence of MINIMUM and MAXIMUM Combiners for Two Classes
Let  = {D1,… , DL} be the classifier ensemble and Ω = {𝜔1,𝜔2} be the set of
class labels. The individual outputs are estimates of the posterior probabilities. The
output di,j of classifier Di (supporting the hypothesis that x comes from class 𝜔j) is
an estimate of P(𝜔j|x), j = 1, 2. Here we prove that the minimum and the maximum
combiners are equivalent for c = 2 classes and any number of classifiers L, provided
the two outputs from each classifier satisfy

P̂(𝜔1|x) + P̂(𝜔2|x) = 1.

This equivalence means that the class label assigned by the minimum and the max-
imum combiners will be the same. In case of a tie for one of the rules, there will be
a tie for the other rule as well, and any of the two class labels could be assigned in
both cases.

Proposition 5.1 Let a1,… , aL be the L outputs for class 𝜔1, and 1 − a1,… , 1 − aL
be the L outputs for class 𝜔2, ai ∈ [0, 1]. Then the class label assigned to x by the
MINIMUM and MAXIMUM combination rules is the same.

Proof. Without loss of generality assume that a1 = mini ai, and aL = maxi ai. Then
the minimum combination rule will pick a1 and 1 − aL as the support for 𝜔1 and
𝜔2, respectively, and the maximum rule will pick aL and 1 − a1. Consider the three
possible relationships between a1 and 1 − aL.

(a) If a1 > 1 − aL then aL > 1 − a1, and the selected class is 𝜔1

with both methods.
(b) If a1 < 1 − aL then aL < 1 − a1, and the selected class is 𝜔2

with both methods.
(c) If a1 = 1 − aL then aL = 1 − a1, and we will pick a class at random

with both methods.

Note: A discrepancy between the error rates of the two combination methods
might occur in numerical experiments due to the random tie break in (c). If we agree
to always assign class 𝜔1 when the support for the two classes is the same (a perfectly
justifiable choice), the results for the two methods will coincide.
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5.3.2.2 Equivalence of MAJORITY VOTE and MEDIAN Combiner for Two
Classes and Odd L Consider again the case of two classes, and L classifiers with
outputs for a certain x, a1,… , aL, for class 𝜔1, and 1 − a1,… , 1 − aL, for class 𝜔2,
where L is odd.

Proposition 5.2 The class label assigned to x by the MAJORITY VOTE rule and
MEDIAN combination rule is the same.

Proof. Assume again that a1 = mini ai, and aL = maxi ai. Consider the median rule
first. The median of the outputs for class 𝜔1 is a L+1

2
.

(a) If a L+1
2

> 0.5, then the median of the outputs for 𝜔2, 1 − a L+1
2

< 0.5, and class

𝜔1 will be assigned. The fact that a L+1
2

> 0.5 means that all a L+1
2

+1,… , aL

are strictly greater than 0.5. This makes at least L+1
2

posterior probabilities
for 𝜔1 greater than 0.5, which, when “hardened,” will give label 𝜔1. Then the
majority vote rule will assign to x class label 𝜔1.

(b) Alternatively, if a L+1
2

< 0.5, then 1 − a L+1
2

> 0.5, and class𝜔2 will be assigned

by the median rule. In this case, at least L+1
2

posterior probabilities for 𝜔2 are
greater than 0.5, and the majority vote rule will assign label 𝜔2 as well.

(c) For a L+1
2

= 0.5 a tie occurs, and any of the two labels can be assigned by the

median rule. The same applies for the majority vote, as all the soft votes at 0.5
(same for both classes) can be “hardened” to any of the two class labels.

Again, a difference in the estimated errors of the two methods might occur in
experiments due to the arbitrary “hardening” of label 0.5. For example, if we agree
to always assign class 𝜔1 when the posterior probabilities are both 0.5, the results for
the two methods will coincide.

5.3.3 Generalized Mean Combiner

The generalized mean [105] is a useful aggregation formula governed by a parameter.
Applied in the classifier combination context, the ensemble output for class 𝜔j is

𝜇j(x, 𝛼) =

(
1
L

L∑
i=1

di,j(x)𝛼
) 1

𝛼

, (5.21)

where 𝛼 is the parameter. Some special cases of the generalized mean are shown in
Table 5.2.

Observe that the geometric mean is equivalent to the product combiner. Raising
to the power of 1

L
is a monotonic transformation which does not depend on the class

label j, and therefore will not change the order of 𝜇j(x)s. Hence the winning label
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TABLE 5.2 Special Cases of the Generalized Mean

𝛼 → −∞ ⇒ 𝜇j(x, 𝛼) = mini{di,j(x)} minimum

𝛼 = −1 ⇒ 𝜇j(x, 𝛼) =
(

1

L

∑L
i=1

1

di,j(x)

)−1
harmonic mean

𝛼 → 0 ⇒ 𝜇j(x, 𝛼) =
(∏L

i=1 di,j(x)
)1∕L

geometric mean

𝛼 = 1 ⇒ 𝜇j(x, 𝛼) = 1

L

∑L
i=1 di,j(x) arithmetic mean

𝛼 → ∞ ⇒ 𝜇j(x, 𝛼) = maxi{di,j(x)} maximum

obtained from the product combiner will be the same as the winning label from the
geometric mean combiner.

As we are considering nontrainable combiners here, we assume that the system
designer chooses 𝛼 beforehand. This parameter can be thought of as the “level of
optimism” of the combiner. The minimum combiner (𝛼 → −∞) is the most pessimistic
choice. With this combiner, we know that 𝜔j is supported by all members of the
ensemble at least as much as 𝜇j(x). At the other extreme, maximum is the most
optimistic combiner. Here we accept an ensemble degree of support 𝜇j(x) on the
ground that at least one member of the team supports 𝜔j with this degree. If we
choose to tune 𝛼 with respect to the ensemble performance, then we should regard the
generalized mean combiner as a trainable combiner as discussed later. The generalized
mean combiner is detailed in Figure 5.6.

GENERALIZED MEAN COMBINER

Training: Choose the level of optimism 𝛼 (see Table 5.2).

Operation: For each new object:

1. Classify the new object x to find its decision profile DP(x), as in Equation 5.1.
2. Calculate the support for each class by

P(k) =

(
1
L

L∑
i=1

di,k(x)𝛼
) 1

𝛼

, k = 1,… , c.

3. Assign label k∗ to the object, where

k∗ = arg
c

max
k=1

P(k).

Return the ensemble label of the new object.

FIGURE 5.6 Training and operation algorithm for the generalized mean combiner.
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◻◼ Example 5.4 Effect of the level of optimism 𝜶.
To illustrate the effect of the level of optimism 𝛼 we used the 2D rotated checker
board data set. Examples of a training and a testing data set are shown in Figure 5.7a
and 5.7b, respectively.
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FIGURE 5.7 An example of a training (a) and a testing (b) set for the rotated checker board
data. One hundred randomly sampled training/testing sets were used in the experiment.

One hundred training/testing sets were generated from a uniform distribution
within the unit square. The labels of the points were assigned as in the rotated checker
board example. In each experiment, the training set consisted of 200 examples and
the testing set consisted of 1000 examples. Each ensemble was formed by taking
10 bootstrap samples of size 200 from the training data (uniform sampling with
replacement) and training a classifier on each sample. We chose SVM as the base
ensemble classifier.1 A Gaussian kernel with spread 𝜎 = 0.3 was applied, with a
penalizing constant C = 50. The generalized mean formula (5.21) was used, where
the level of optimism 𝛼 was varied from −50 to 50 with finer discretization from
−1 to 1. The ensemble error, averaged across the 100 runs, is plotted against 𝛼 in
Figure 5.8a.

A zoom window of the ensemble error for 𝛼 ∈ [−2, 5] is shown in Figure 5.8b.
The average, product, and harmonic mean combiners are identified on the curve. For
this example, the average combiner gave the best result.

The results from the illustration above should not be taken as evidence that the
average combiner is always the best. The shape of the curve will depend heavily on
the problem and on the base classifier used. The average and the product are the two
most popular combiners. Yet, there is no guideline as to which one is better for a
specific problem. The current understanding is that the average, in general, might be
less accurate than the product for some problems, but is the more stable of the two
[8, 109, 207, 281, 382, 383].

1The version we used is the SVM implementation within the Bioinformatics toolbox of MATLAB.
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(a) Ensemble error for –50 ≤ α ≤ 50 (b) Zoom for α ∈ [–2, 5]

FIGURE 5.8 Generalized mean combiner for the checker board data.

Even though Figure 5.8 shows a clear trend, the actual difference between the
ensemble classification errors for the different combiners is negligible. Much more
accuracy can be gained (or lost) by changing the width of the Gaussian kernel 𝜎, or
the penalizing constant C.

5.3.4 A Theoretical Comparison of Simple Combiners

Can we single out a combiner that performs best in a simple scenario? Consider the
following set-up [9, 235]:

� There are only two classes, Ω = {𝜔1,𝜔2}.
� All classifiers produce soft class labels, dj,i(x) ∈ [0, 1], i = 1, 2, j = 1,… , L,

where dj,i(x) is an estimate of the posterior probability P(𝜔i|x) by classifier Dj
for an input x ∈ ℝn. We consider the case where for any x, dj,1(x) + dj,2(x) = 1,
j = 1,… , L.

� Let x ∈ ℝn be a data point to classify. Without loss of generality, we assume
that the true posterior probability is P(𝜔1|x) = p > 0.5. Thus, the Bayes-optimal
class label for x is 𝜔1, and a classification error occurs if label 𝜔2 is assigned.

Assumption. The classifiers commit independent and identically distributed errors
in estimating P(𝜔1|x) such that

dj,1(x) = P(𝜔1|x) + 𝜂(x) = p + 𝜂(x), (5.22)

and respectively

dj,2(x) = 1 − p − 𝜂(x), (5.23)
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where 𝜂(x) has

(i) a normal distribution with mean 0 and variance 𝜎2 (we take 𝜎 to vary between
0.1 and 1) and

(ii) a uniform distribution spanning the interval [−b,+b] (b varies from 0.1 to 1).

Thus dj,1(x) is a random variable with normal or uniform distribution and so is
dj,2(x).

The combiners we compare are minimum (same as maximum), average, and
median combiners [235] (Equation 5.16). As the median and the majority vote com-
biners are also identical for two classes, the comparison includes majority vote as
well. Finally, we include the individual classification rate and an “oracle” combiner
which predicts the correct class label if at least one classifier in the ensemble gives a
correct prediction. The performance of the combination rules is expected to be better
than that of the individual classifier but worse than that of the oracle.

Table 5.3 shows the analytical expressions of the probability of error for the
combiners under the normal distribution assumption, and Table 5.4, for the uniform
distribution. The derivations of the expressions are shown in Appendix 5.A.1. As
explained in the appendix, there is no closed-form expression for the Min/Max
combiner for the normal distribution of the estimation error, so these combiners were
taken into the comparison only for the uniform distribution.

Figures 5.9 and 5.10 show the ensemble error rate for the normal and uni-
form distributions, respectively, as a function of two arguments: the true poste-
rior probability P(𝜔1|x) = p and the parameter of the distribution. For the nor-
mal distribution (Figure 5.9), 𝜎 took values from 0.1 to 1, and for the uniform

TABLE 5.3 The Theoretical Error Pe for the Single Classifier and the Six Fusion
Methods for the Normal Distribution

Method Ensemble error rate, Pe

Single classifier Φ
(

0.5 − p

𝜎

)
(Individual error rate)

Min/Max –

Average (Sum) Φ

(√
L(0.5 − p)

𝜎

)
Median/Majority

L∑
j= L+1

2

(
L
j

)
× Φ
(

0.5 − p

𝜎

)j

×
[

1 − Φ
(

0.5 − p

𝜎

)]L−j

Oracle Φ
(

0.5 − p

𝜎

)L

Notes:
L is the number of classifiers in the ensemble;
p is the true posterior probability P(𝜔1|x) for class 𝜔1 for the given object x;
Φ(.) is the cumulative distribution function for the standard normal distribution N(0, 1).
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TABLE 5.4 The Theoretical Error Pe for the Single Classifier and the Six Fusion
Methods for the Uniform Distribution (p − b < 0.5)

Method Ensemble error rate, Pe

Single classifier
0.5 − p + b

2b
(Individual error rate.)

Min/Max
1
2

(
1 − 2p

2b
+ 1

)L

Average Φ

(√
3L(0.5 − p)

b

)
Median/Majority

L∑
j= L+1

2

(
L
j

)
×
(

0.5 − p + b

2b

)j

×
[

1 −
0.5 − p + b

2b

]L−j

Oracle

(
0.5 − p + b

2b

)L

Notes:
L is the number of classifiers in the ensemble;
p is the true posterior probability P(𝜔1|x) for class 𝜔1 for the given object x;
Φ(.) is the cumulative distribution function for the standard normal distribution N(0, 1).
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FIGURE 5.9 Ensemble error rate of the individual classifier and the simple combiners for
normal distribution of the estimation error 𝜂.
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FIGURE 5.10 Ensemble error rate of the individual classifier and the simple combiners for
uniform distribution of the estimation error 𝜂.

distribution, b took values from 0.1 to 1, ensuring that p − b < 0.5. The posterior
probability p was varied from 0.5 to 1 for both figures. The ensemble size for this
example was L = 5 classifiers.

The surfaces in both figures are clearly layered beneath one another. Expectedly,
the top surface (largest error) is the individual classifier while the bottom layer
(smallest error) is the oracle combiner. Further on, when p is close to 0.5, the Bayes
error is high, and so is the ensemble error. The ensemble error goes down to 0 for a
higher p and a lower variability of the estimate (low 𝜎 and low b), and does so quicker
for the better combiners.

The average and the median/vote methods have a closer performance for normally
distributed than for the uniformly distributed 𝜂, the average being the better of the
two. Finally, for the uniform distribution, the average combiner is outperformed by
the minimum/maximum combiner.

Figure 5.11 shows the behavior of the combiners as a function of the ensemble
size L. We chose a fairly difficult problem where the true posterior probability is 0.55
(high uncertainty), and the spread parameter of the distributions is large (𝜎 = 0.9 for
the normal distribution, and b = 0.9 for the uniform distribution). The figure confirms
that the above observations hold for any number of classifiers. It also indicates that
larger ensembles secure a smaller classification error, and amplify the performance
differences of the combiners. Even though this analysis is based on assumptions and
theory, it suggests that checking several combiners for a set of trained classifiers may
pay off.
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FIGURE 5.11 Ensemble error for the simple combiners as a function of the ensemble
size L.

Similar analyses can be carried out for distributions other than normal or uniform.
Kittler and Alkoot [206], Chen and Cheng [71], and Cabrera [62] studied the behavior
of various combiners for nonnormal distributions and large ensemble sizes. The
conclusion is that for nonsymmetrical, bimodal, or heavy-tailed distributions, the
combiners may have very different performances. Even though the assumptions
may not hold in real-life problems, these analyses suggest that choosing a suitable
combiner is important.

We should be aware of the following caveat. Although the combiners in this section
are considered nontrainable, any comparison for the purpose of picking one among
them is, in fact, a form of training. Choosing a combiner is the same as tuning the
level of optimism 𝛼 of the generalized mean combiner. We look at the question “to
train or not to train” later in this chapter.

5.3.5 Where Do They Come From?

5.3.5.1 Intuition and Common Sense Many simple combiners come from intu-
ition and common sense. Figure 5.12 shows an example. Suppose that we want to
bet on a horse, and have three choices. One of the horses will win the race, and the
classification task is to predict which horse. The only information we have access
to is the opinions of four friends. Each friend offers a guess of the probability for
each horse to win the race. The friends are the classifiers in the ensemble, and
the probabilities they predicted are arranged in a decision profile, as shown in the
figure. The decision maker has to decide which combination rule to apply. If there
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FIGURE 5.12 Simple combiners come from intuition and common sense.

is no further information about how accurate the predictions might be, the decision
maker can choose their level of optimism, and pick the respective combiner. Take the
over-conservative minimum combiner, for example. Given a horse, the support for
this “class,” denoted 𝜇, can be interpreted in the following way. All experts agree to
at least a degree 𝜇 that the horse will win. It makes sense therefore, to choose the
horse with the largest 𝜇. The opposite strategy is to choose the horse that achieved
the highest degree of support among all horses and all experts. In this case, there is
at least one expert that believes in this horse with a degree this high. Both minimum
and maximum combiners disregard the consensus opinion. Conversely, the average
(sum), median, and the jury combiners measure a central tendency of the support
for the classes. The decision maker might reach a different conclusion depending on
the combination rule they apply. In the absence of a ground truth, we cannot judge
whether the decision was right. This example merely demonstrates the flexibility of
the simple combiners.

Interestingly, many simple combiners can be derived as the optimal combiner
under various scenarios and assumptions.

5.3.5.2 Conditional Independence of Features We can regard di,j(x) as an esti-
mate of the posterior probability P(𝜔j|x) produced by classifier Di. Finding an optimal
(in the Bayesian sense) combination of these estimates is not straightforward. Here
we give a brief account of some of the theories underpinning the most common simple
combiners.

Consider L different conditionally independent feature subsets. Each subset gener-
ates a part of the feature vector, x(i), so that x = [x(1),… , x(L)]T , x ∈ ℝn. For example,
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suppose that there are n = 10 features altogether and these are grouped in the fol-
lowing L = 3 conditionally independent subsets (1,4,8), (2,3,5,6,10), and (7,9). Then

x(1) = [x1, x4, x8]T , x(2) = [x2, x3, x4, x6, x10]T , x(3) = [x7, x9]T
.

From the assumed independence, the class-conditional pdf for class 𝜔j is a product
of the class-conditional pdf on each feature subset (representation):

p(x|𝜔j) =
L∏

i=1

p(x(i)|𝜔j). (5.24)

Deriving the product rule weighted by the prior probabilities as the optimal com-
biner for this case is straightforward [44, 231, 256]. The jth output of classifier Di is
an estimate of the probability

P(𝜔j|x(i), Di) =
P(𝜔j)p(x(i)|𝜔j)

p(x(i))
, (5.25)

hence

p(x(i)|𝜔j) =
P(𝜔j|x(i))p(x(i))

P(𝜔j)
. (5.26)

The posterior probability using the whole of x is

P(𝜔j|x) =
P(𝜔j)p(x|𝜔j)

p(x)
=

P(𝜔j)

p(x)

L∏
i=1

p(x(i)|𝜔j). (5.27)

Substituting Equation 5.26 into Equation 5.27,

P(𝜔j|x) = P(𝜔j)
(1−L)

L∏
i=1

P(𝜔j|x(i)) ×
∏L

i=1 p(x(i))

p(x)
. (5.28)

The fraction at the end does not depend on the class label k therefore we can ignore it
when calculating the support 𝜇j(x) for class 𝜔j. Taking the classifier output di,k(x(i))
as the estimate of P(𝜔j|x(i)) and estimating the prior probabilities for the classes from
the data, the support for 𝜔j is calculated as the product combination rule

P(𝜔j|x) ∝ P(𝜔j)
(1−L)

L∏
i=1

P(𝜔j|x(i)) (5.29)

= P̂(𝜔j)
(1−L)

L∏
i=1

di,k(x(i)) = 𝜇j(x). (5.30)
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Kittler et al. [207] take this formula further to derive the average combiner. They
investigate the error sensitivity of the two combiners and show that the average
combiner is much more resilient to estimation errors of the posterior probabilities
than the product combiner. The product combiner is over-sensitive to estimates close
to zero. The presence of such estimates has the effect of veto on that particular class
regardless of how large some of the estimates of other classifiers might be.

5.3.5.3 Kullback–Leibler Divergence Miller and Yan [281] offer a theoretical
framework for the average and product combiners based on the Kullback–Leibler
divergence (KL). KL divergence measures the distance between two probability
distributions, q (prior distribution) and p (posterior distribution). KL divergence is
also called “relative entropy” or “cross-entropy,” denoted by KL(p ∥ q).2 It can be
interpreted as the amount of information necessary to change the prior probability
distribution q into posterior probability distribution p. For a discrete x,

KL(p ∥ q) =
∑

x

p(x) log2

(
p(x)
q(x)

)
. (5.31)

For identical distributions, the KL divergence is zero. We regard each row of DP(x)
as a prior probability distribution on the set of class labels Ω and use di,j(x) to denote
the estimate of the probability P(𝜔j|x, Di). Denote by P(i) the probability distribution
on Ω provided by classifier Di, that is, P(i) = (di,1(x),… , di,c(x)) . For example, let
DP(x) be

DP(x) =
⎡⎢⎢⎣

0.3 0.7
0.6 0.4
0.5 0.5

⎤⎥⎥⎦ .
Then P(1) = (0.3, 0.7) is the pmf on Ω = {𝜔1,𝜔2} due to classifier D1.

Given the L sets of probability estimates, one for each classifier, our first hypothesis
is that the true values of P(𝜔i|x) (posterior probabilities) are the ones most agreed
upon by the ensemble  = {D1,… , DL}. Denote these agreed values by Pens =
(𝜇1(x),… ,𝜇c(x)). Then the averaged KL divergence across the L ensemble members
is

KLav = 1
L

L∑
i=1

KL(Pens ∥ P(i)). (5.32)

We seek Pens which minimizes Equation 5.32. To simplify the notation, we shall drop
the (x) from 𝜇j(x) and di,j(x) keeping in mind that we are operating on a specific
point x in the feature space ℝn. Take 𝜕KLav∕𝜕𝜇j, include the term with the Lagrange

2It is assumed that for any x, if q(x) = 0 then p(x) = 0, and also 0 × log 0 = 0.
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multiplier to ensure that Pens is a pmf, and set to zero

𝜕

𝜕𝜇j

[
KLav + 𝜆

(
1 −

c∑
k=1

𝜇k

)]

= 1
L

L∑
i=1

𝜕

𝜕𝜇j

[
c∑

k=1

𝜇k log2

(
𝜇k

di,k

)]
− 𝜆 (5.33)

= 1
L

L∑
i=1

(
log2

(
𝜇j

di,j

)
+ C

)
− 𝜆 = 0, (5.34)

where C = 1
ln(2)

. Solving for 𝜇j, we obtain

𝜇j = 2(𝜆−C)
L∏

i=1

(di,j)
1
L . (5.35)

Substituting Equation 5.35 in
∑c

k=1 𝜇j = 1 and solving for 𝜆 we arrive at

𝜆 = C − log2

(
c∑

k=1

L∏
i=1

(di,k)
1
L

)
. (5.36)

Substituting 𝜆 back in Equation 5.35 yields the final expression for the ensemble
probability for class 𝜔j given the input x as the normalized geometric mean

𝜇j =
∏L

i=1(di,j)
1
L∑c

k=1

∏L
i=1(di,k)

1
L

. (5.37)

Note that the denominator of 𝜇j does not depend on j. Also, the power 1
L

in the
numerator is only a monotone transformation of the product and will not change
the ordering of the discriminant functions obtained through product. Therefore, the
ensemble degree of support for class 𝜔j, 𝜇j(x) reduces to the product combination
rule

𝜇j =
L∏

i=1

di,j. (5.38)
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If we swap the places of the prior and posterior probabilities in Equation 5.32 and
again look for a minimum with respect to 𝜇j, we obtain

𝜕

𝜕𝜇j

[
KLav + 𝜆

(
1 −

c∑
k=1

𝜇k

)]

= 1
L

L∑
i=1

𝜕

𝜕𝜇j

[
c∑

k=1

di,k log2

(
di,k

𝜇k

)]
− 𝜆 (5.39)

= − 1
C L 𝜇j

L∑
i=1

di,j − 𝜆 = 0, (5.40)

where C is again 1
ln(2)

. Solving for 𝜇j gives

𝜇j = − 1
𝜆 C L

L∑
i=1

di,j. (5.41)

Substituting Equation 5.41 in
∑c

k=1 𝜇k = 1 and solving for 𝜆 leads to

𝜆 = − 1
C L

c∑
k=1

L∑
i=1

di,k = − L
C L

= − 1
C
. (5.42)

The final expression for the ensemble probability for class 𝜔j, given the input x, is
the normalized arithmetic mean:

𝜇j =
1
L

L∑
i=1

di,j, (5.43)

which is average combination rule (the same as average or sum combiner).
The average combiner was derived in the same way as the product combiner

under a slightly different initial assumption. We assumed that Pens is some unknown
prior pmf which needs to be transformed into the L posterior pmfs suggested by the
L ensemble members. Thus, to derive the average rule, we minimized the average
information necessary to transform Pens to the individual pmfs.

Miller and Yan go further and propose weights which depend on the “critic”
for each classifier and each x [281]. The “critic” estimates the probability that the
classifier is correct in labeling x. Miller and Yen derive the product rule with the
critic probability as the power of di,j and the sum rule with the critic probabilities as
weights. Their analysis and experimental results demonstrate the advantages of the
weighted rules. The authors admit that there is no reason why one set-up should be
preferred to another.



166 COMBINING CONTINUOUS-VALUED OUTPUTS

5.4 THE WEIGHTED AVERAGE (LINEAR COMBINER)

Given an object x, this combiner aggregates the class supports from the decision
profile to arrive at a single support value for each class. Three groups of average
combiners can be distinguished based on the respective number of weights:

� L weights. In this model there is one weight per classifier. The support for class
𝜔j is calculated as

𝜇j(x) =
L∑

i=1

wi di,j(x). (5.44)

� c × L weights. The weights are class-specific and classifier-specific. The support
for class 𝜔j is calculated as

𝜇j(x) =
L∑

i=1

wij di,j(x). (5.45)

Again, only the jth column of the decision profile is used in the calculation, that
is, the support for class 𝜔j is obtained from the individual supports for 𝜔j.

� c × c × L weights. The support for each class is obtained by a linear combination
of the entire decision profile DP(x),

𝜇j(x) =
L∑

i=1

c∑
k=1

wikj di,k(x), (5.46)

where wikj is the (i, k)th weight for class 𝜔j. The whole of the decision profile
is used as the intermediate feature space.

The following subsections present different ways to calculate the weights.

5.4.1 Consensus Theory

The weights may be set so as to express the quality of the classifiers. Accurate and
robust classifiers should receive larger weights. Such weight assignments may come
from subjective estimates or theoretical set-ups.

Berenstein et al. [35] bring to the attention of the Artificial Intelligence com-
munity the so-called consensus theory which has enjoyed a considerable interest in
social and management sciences but remained not well known elsewhere. The the-
ory looks into combining expert opinions and in particular combining L probability
distributions on Ω (in our case, the rows of the decision profile DP(x)) into a single
distribution (𝜇1(x),… ,𝜇c(x)). A consensus rule defines the way this combination
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is carried out. Consensus rules are derived to satisfy a set of desirable theoretical
properties [34, 44, 289].

Based on an experimental study, Ng and Abramson [289] advocate using simple
consensus rules such as the weighted average, called the linear opinion pool (Equation
5.44), and the weighted product called the logarithmic opinion pool. The approach
taken to assigning weights in consensus theory is based on the decision maker’s
knowledge of the importance of the experts (classifiers). The weights are assigned on
the basis of some subjective or objective measure of importance of the experts [35].

5.4.2 Added Error for the Weighted Mean Combination

Extending the theoretical study of Tumer and Ghosh [393], Fumera and Roli derive
the added error for the weighted average combination rule [143, 145].

The ensemble estimate of P(𝜔j|x) is

P̂(𝜔j|x) =
L∑

i=1

wi di,j, i = 1,… , c, (5.47)

where di,j is the respective entry in the decision profile and wi are classifier-specific
weights such that

L∑
i=1

wi = 1, wi ≥ 0. (5.48)

Under a fairly large list of assumptions, a set of optimal weights for independent
classifiers can be calculated from the added errors of the individual classifiers, Ei

add,
m = 1,… , L. The added error is the excess above the Bayes error for the problem for
the specific classifier. The weights are

wi =

1
Ei

add∑L
k=1

1
Ek

add

, i = 1,… , L. (5.49)

Since we do not have a way to estimate the added error, we can use as a proxy the
estimates of the classification errors of the base classifiers.

Despite the appealing theoretical context, this way of calculating the weights was
not found to be very successful [144]. This can be due to the unrealistic and restrictive
assumptions which define the optimality conditions giving rise to these weights.
Fumera and Roli’s experiments suggested that for large ensembles, the advantage of
weighted averaging over simple averaging disappears. Besides, in weighted averaging
we have to estimate the L weights, which is a potential source of error and may cancel
the already small advantage.
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REGRESSION COMBINER

Training: Given is a set of L trained classifiers and a labeled data set.

1. Find the outputs (decision profiles) of the classifiers for each point in the data set.
2. For each class j, j = 1,… , c, train a regression of the type 5.46. We can choose to fit

the regression with or without an intercept term.
3. Return the coefficients of the c regressions. The coefficients of the regression for class j

are denoted by wikj as in Equation 5.46. If there was an intercept term, the number of
returned coefficients for each regression is L × c + 1.

Operation: For each new object

1. Classify the new object x and find its decision profile DP(x) as in Equation 5.1.
2. Calculate the support for each class P(j) = 𝜇j(x) as in Equation 5.46.
3. Assign label i∗ to the object, where

i∗ = arg
c

max
j=1

P(j).

Return the ensemble label of the new object.

FIGURE 5.13 Training and operation algorithm for the linear regression combiner.

5.4.3 Linear Regression

One way to set the weights is to fit a linear regression to the posterior probabilities.
Take di,j(x), i = 1,… , L, to be estimates of the posterior probability P(𝜔j|x). For
classification problems, the target output is given only in the form of a class label. So
the target values for P(𝜔j|x) are either 1 (in 𝜔j) or 0 (not in 𝜔j). Figure 5.13 shows
the training and the operation of the regression combiner.

Classifier combination through linear regression has received significant attention.
The following questions have been discussed:

� Should the weights be nonnegative? If they are, the value of the weight may be
interpreted as the importance of a classifier.

� Should the weights be constrained to sum up to one?
� Should there be an intercept term?

It is believed that these choices have only a marginal impact on the final outcome [193,
384]. The important question is what criterion should be optimized. Minimum squared
error (MSE) is the traditional criterion for regression [175–177, 388]. Different
criteria have been examined in the context of classifier combination through linear
regression, for both small [120] and large ensembles [327], an example of which is
the hinge function, which is responsible for the classification margins [120, 395].

Consider the largest regression model, where the whole decision profile is involved
in approximating each posterior probability as in Equation 5.46. Given a data set
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Z = {z1,… , zN} with labels {y1,… , yN}, yj ∈ Ω, Ergodan and Sen [120] formulate
the optimization problem as looking for a weight vector w which minimizes

Ψ(w) = 1
N

N∑
j=1

⏟⏟⏟

objects

c∑
i=1

⏟⏟⏟

classes

(𝜇i(zj), yj,𝜔i, w) + R(w), (5.50)

where (𝜇i(zj), yj,𝜔i, w) is the loss incurred when labeling object zj ∈ Z, with true
label yj, as belonging to class 𝜔i. R(w) is a regularization term which serves to
penalize very large weights.3 Why is the penalty term needed? Say there are five
classifiers and four classes. For this small problem, the regression 5.46 will need
L × c × c = 5 × 4 × 4 = 80 weights. The chance of over-training cannot be ignored,
hence the need for a regularization term.

To use this optimization set-up, two choices must be made: the type of loss function
 and the regularization function R.

Let us simplify the notation to (a, b) where a ∈ {−1, 1} is the true label, and b
is the predicted quantity. The classification loss is (a, b) = 0 if the signs of a and b
match and (a, b) = 1, otherwise. Minimizing this loss is ideal but mathematically
awkward, hence Rosasco et al. [339] analyze several alternatives:

� The square loss:

(a, b) = (a − b)2 = (1 − ab)2
. (5.51)

� The hinge loss:

(a, b) = max{1 − ab, 0}. (5.52)

This is the criterion function that is minimized for training the SVM classifier.
� The logistic loss:

(a, b) = 1
ln 2

ln(1 + exp{−ab}). (5.53)

Based on its theoretical properties, Ergodan and Sen [120] recommend the hinge loss
function.

3An intercept term b can be added to the regression in Equation 5.46, and included in the weight vector w.
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Reid and Grudic [327] study the effect of different regularization functions.

� L2 regularization, which, used with the square loss function 5.51, is called ridge
regression:

R(w) = 𝜆

∑
k

w2
k = 𝜆||w||22. (5.54)

� L1 (LASSO)4 regularization:

R(w) = 𝜆

∑
k

|wk| = 𝜆||w||1. (5.55)

� The elastic net regularization, which combines the above two. The regularization
term is

R(w) = 𝜆||w||22 + (1 − 𝜆)||w||1. (5.56)

Ridge regression arrives at dense models (using all classifiers in the ensemble)
whereas LASSO produces sparse ensembles. Applying the three penalty terms with
the square loss for large ensembles, Reid and Grudic [327] draw the following
conclusions. Ridge regression outperforms nonregularized regression, and improves
on the performance of the single best classifier in the ensemble. LASSO was not as
successful as the ridge regression, leading the authors to conclude that dense models
were better than the sparse models.

Calculating the solution of the optimization problem with the hinge loss function is
not straightforward. However, MATLAB Statistics Toolbox offers a ridge regression
code, which we will use for the illustration here.

◻◼ Example 5.5 Ridge regression for posterior probabilities
We used again the letter data set from the UCI Machine Learning Repository [22].
The set consists of N = 20, 000 data points described by n = 16 features and labeled
into the c = 26 classes of the letters of the Latin alphabet. Since the data set is
reasonably large, we used the hold-out method for this example. The data set was
randomly split into training, validation, and testing parts. The training part was used
to train L = 51 linear classifiers, the validation part, for training the ridge regression
with a pre-specified value of the parameter 𝜆, and the testing part was used to
estimate the testing error of the ensemble. Each classifier was trained on a bootstrap
sample from the training set. The data set was chosen on purpose. The number of
classes is large, c = 26, which means that the dimensionality of the intermediate
space is L × c = 51 × 26 = 1326. This makes classification in the intermediate space
challenging and sets the scene for demonstrating the advantages of ridge regression.
Twenty-six sets of coefficients were fitted on the 1326 features, one regression for
each class, and the ensemble outputs were calculated as explained in Figure 5.13.

4LASSO stands for least absolute shrinkage and selection operator.
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TABLE 5.5 Ensemble Error for a Ridge Regression with Parameter 𝜆

Training/validation/testing split in %

𝜆 4/16/80 12/48/40 16/64/20 8/72/20

0.01 0.1728 0.1034 0.1012 0.0985
0.02 0.1714 0.1031 0.1007 0.0985
0.50 0.1559 0.1029 0.1012 0.0975
0.80 0.1536 0.1029 0.1014 0.0985

LDC on training + validation 0.3056 0.2913 0.2944 0.3108

Decision tree on ensemble 0.3925 0.2993 0.2801 0.2834

Table 5.5 shows the ensemble error for a ridge regression on the whole decision
profile (Equation 5.46), minimizing MSE with L2 penalty term (Equation 5.54).

Along with the ridge regression results, we show the classification error for:

1. The LDC trained on the training plus validation data, and tested on the testing
data.5

2. Decision tree classifier built on the validation set, using as inputs the classifier
outputs. The classifiers were trained on the training data. The decision tree was
tested on the classifier outputs for the testing data. Thus, the decision tree is the
combiner, trained on unseen data, and tested on another unseen data set.6

What does the example show?

(i) The regression combiner was invariably better than the decision tree
combiner. In all four splits of the data into training/validation/testing,
the ensemble errors for the ridge regression were smaller that those for the
decision tree combiner.

(ii) The regression combiner was invariably better than the individual LDC.
Interestingly, the decision tree combiner failed miserably in comparison
with the regression combiner for this problem, and barely managed to
improve on the classification error of the individual LDC for the two
larger validation sets.

(iii) Larger validation sets led to smaller ensemble errors. The training set was
kept small on purpose. By doing so we aimed at creating an ensemble
of fairly weak but diverse linear classifiers. For such an ensemble, the
combiner would be important, and clear differences between the combiners
could be expected.

(iv) The penalty constant 𝜆 had a marked effect for the smallest validation set
and a little effect for larger sets. This was also to be expected, as 𝜆 is
supposed to correct for the instability of the regression trained on a small
sample.

5Function classify from the Statistics Toolbox of MATLAB was used for the LDC.
6Functionclassregtree from the Statistics Toolbox of MATLAB was used for the decision tree classifier.
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This example shows that the regression combiner may work well, especially for
problems with a large number of classes, and large ensemble sizes, resulting in a
high-dimensional intermediate feature space. Its success will likely depend on the
data set, the ensemble size, the way the individual classifiers are trained, and so on.

Regression methods are only one of the many possible ways to train the combina-
tion weights. Ueda [395] uses a probabilistic descent method to derive the weights
for combining neural networks as the base classifiers. Some authors consider using
genetic algorithms for this task [73, 249].

5.5 A CLASSIFIER AS A COMBINER

Consider the intermediate feature space where each point is an expanded version of
DP(x) obtained by concatenating its L rows. Any classifier can be applied for labeling
this point [189, 384, 395].

5.5.1 The Supra Bayesian Approach

Jacobs [193] reviews methods for combining experts’ probability assessments. Supra
Bayesian methods consider the experts’ estimates as data, as many of the combiners
do. The problem of estimating 𝜇j(x) becomes a problem of Bayesian learning in
the intermediate feature space where the decision profile DP(x) provides the L × c
features. Loosely speaking, in supra Bayesian approach for our task, we estimate
the probabilities 𝜇j(x) = P(𝜔j|x), j = 1,… , c, using the L distributions provided by
the ensemble members. Since these distributions are organized in a decision profile
DP(x), we have

𝜇j(x) = P(𝜔j|x) ∝ p(DP(x)|𝜔j)P(𝜔j), j = 1,… , c, (5.57)

where p(DP(x)|𝜔j) is the class-conditional likelihood of the decision profile for the
given x and 𝜔j. We assume that the only prior knowledge that we have is some
estimates of the c prior probabilities P(𝜔j).

When the classifier outputs are class labels, the supra Bayesian approach is the
theoretical justification of the multinomial combination method, also called BKS
(Chapter 4). For continuous-valued outputs, this approach, albeit theoretically well
motivated, is impractical [193]. The reason is that the pdf p(DP(x)|𝜔j) is difficult to
estimate. In principle, the supra Bayesian approach means that we use the intermediate
feature space to build a classifier which is as close as possible to the Bayes classifier
thereby guaranteeing the minimum possible classification error rate. Viewed in this
light, all combiners that treat the classifier outputs in DP(x) as new features are
approximations within the supra Bayesian framework.
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DECISION TEMPLATES COMBINER

Training: For j = 1,… , c, calculate the mean of the decision profiles of all members of 𝜔j

from the data set Z. Call this mean decision template DTj

DTj =
1
Nj

∑
yk=𝜔j
zk∈Z

DP(zk),

where Nj is the number of elements of Z from 𝜔j.

Operation: Given the input x ∈ ℝn, construct DP(x). Calculate the similarity  between
DP(x) and each DTj,

𝜇j(x) = (DP(x), DTj) j = 1,… , c

and label x to the class with the largest support.

Return the ensemble label of the new object.

FIGURE 5.14 Training and operation algorithm for the decision templates combiner.

5.5.2 Decision Templates

The idea of the decision templates (DT) combiner is to remember the most typical
decision profile for each class 𝜔j, called the decision template, DTj, and then compare
it with the current decision profile DP(x) using some similarity measure . The closest
match will label x. Figures 5.14 and 5.15 describe the training and the operation of
the decision templates combiner.
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FIGURE 5.15 Operation of the decision templates combiner.
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Two typical measures of similarity  are based upon

� The squared Euclidean distance. The ensemble support for 𝜔j is

𝜇j(x) = 1 − 1
L × c

L∑
i=1

c∑
k=1

(
DTj(i, k) − di,k(x)

)2
, (5.58)

where DTj(i, k) is the (i, k)th entry in decision template DTj. The outputs 𝜇j
are within the interval [0,1] but this scaling is not necessary for classification
purposes. The class with the maximum support would be the same if we use
just

𝜇j(x) = −
L∑

i=1

c∑
k=1

(
DTj(i, k) − di,k(x)

)2
. (5.59)

This calculation is equivalent to applying the nearest mean classifier in the
intermediate feature space. While we use only the Euclidean distance in (5.58),
there is no reason to stop at this choice. Any distance could be used, for example,
the Minkowski or the Mahalanobis distance.

� A symmetric difference coming from the fuzzy set theory [222, 233]. The support
for 𝜔j is

𝜇j(x) = 1 − 1
L × c

L∑
i=1

c∑
k=1

max{min{DTj(i, k), (1 − di,k(x))},

min{(1 − DTj(i, k)), di,k(x)}}. (5.60)

◻◼ Example 5.6 Decision templates combiner (DT)
Let c = 3, L = 2, and let the decision templates for 𝜔1 and 𝜔2 be, respectively,

DT1 =
⎡⎢⎢⎣

0.6 0.4
0.8 0.2
0.5 0.5

⎤⎥⎥⎦ and DT2 =
⎡⎢⎢⎣

0.3 0.7
0.4 0.6
0.1 0.9

⎤⎥⎥⎦ .
Assume that for an input x, the following decision profile has been obtained:

DP(x) =
⎡⎢⎢⎣

0.3 0.7
0.6 0.4
0.5 0.5

⎤⎥⎥⎦ .
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The similarities and the class labels using the Euclidean distance and the symmetric
difference are as follows:

DT version 𝜇1(x) 𝜇2(x) Label

Euclidean distance 0.9567 0.9333 𝜔1

Symmetric difference 0.5000 0.5333 𝜔2

The difference in the “opinions” of the two DT versions with respect to the class label
is an indication of the flexibility of the combiner.

5.5.3 A Linear Classifier

The LDC seems a good choice for determining the weights of the linear combiner
[324, 325, 434]. It has an advantage over the regression method because it minimizes a
function directly related to the classification error while regression methods optimize
posterior probability approximations. Better still, we can use the SVM classifier with
the linear kernel, which is capable of dealing with correlated inputs (the classifier
outputs) and small training sets [161]. In fact, any classifier can be applied as the com-
biner, which brings back the rather philosophical issue raised by Tin Ho [183]: Where
do we stop growing the hierarchy of classifiers upon classifiers? Do we even have to?

5.6 AN EXAMPLE OF NINE COMBINERS FOR
CONTINUOUS-VALUED OUTPUTS

Consider again the fish data set, generated with 20% label noise. Seventeen random
linear classifiers were generated as the base ensemble classifiers. Their classification
boundaries are plotted with lines in each data scatterplot in Figure 5.16.

The continuous-valued outputs (posterior probability estimates) were obtained
using the MATLAB function classify. Each of the nine combiners gives rise to
two plots. The left plot contains the grid with the noisy fish data. The region labeled
as the fish (black dots) by the ensemble is overlaid. The accuracy displayed under the
combiner’s name is calculated with respect to the original (noise-free) class labels.
The right plot is a gray-scale heat map of the ensemble estimate of P(fish|x). The
contour for P(fish|x) = 0.5, delineating the classification region for class fish, is
plotted with a thick line over the heat map.

In this example, the LDC, the ridge regression (𝜆 = 0.5, not tuned), and the SVM
combiner were the winners, with above 80% correct classification rate, given that
the largest prior classifier would give only 64.48%. The worst combiner happened to
be the minimum combiner (equal to the maximum combiner for two classes). The
average, weighted average, and decision templates combiners were obviously too
simplistic for the problem, and gave disappointingly low ensemble accuracies. On
the other hand, the “peppery” right plot for the decision tree combiner demonstrates
a great deal of over-training. Nonetheless, this combiner achieved over 79% correct
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Average (Sum)
69.12

Weighted average
68.84

Tree combiner
79.72

Decision Templates
68.32

SVM combiner
80.52

LDC combiner
87.96

Ridge regression
81.56

Median
71.44

Min/max
62.96

FIGURE 5.16 Comparison of nine combiners on the fish data.

classification, which indicates that, for this problem, even though both alternatives
are wrong, over-fitting gives a better pay-off than under-fitting.

As noted before, this example should not be taken to mean that LDC is always the
best combiner, and minimum/maximum is the worst. The message is that the choice
of a combiner is important, and should not be casually sidelined.

5.7 TO TRAIN OR NOT TO TRAIN?

Some combiners do not need training after the classifiers in the ensemble have been
trained individually. An example of this type is the majority vote combiner. Other
combiners need additional training, for example, the weighted average combiner. A
third class of ensembles develop the combiner during the training of the individual
classifiers, an example of which is AdaBoost, discussed later. If a large data set is
available, training and testing can be done on large, nonintersecting subsets, which
allows for precise tuning while guarding against over-fitting. Small data sets, on the
other hand, pose a real challenge. Duin [108] points out the crucial role of the training
strategy in these cases and gives the following recommendations:

1. If a single training set is used with a nontrainable combiner, then make sure
that the base classifiers are not over-trained.
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2. If a single training set is used with a trainable combiner, then leave the base
classifiers under-trained and subsequently complete the training of the com-
biner on the training set. Here it is assumed that the training set has a certain
“training potential.” In order to be able to train the combiner reasonably, the
base classifiers should not use up all the potential.

3. Use separate training sets for the base classifiers and for the combiners. Then
the base classifiers can be over-trained on their training set. The bias will be
corrected by training the combiner on the separate training set.

Dietrich et al. [93] suggest that the second training set, on which the ensemble
should be trained, may be partly overlapping with the first training set used for the
individual classifiers. Let R be the first training set, V be the second training set,
and T be the testing set. All three sets are obtained from the available labeled set
Z, so R ∪ V ∪ T = Z. If Z is small, the three sets might become inadequately small
thereby leading to badly trained classifiers and ensemble, and unreliable estimates of
their accuracies. To remedy this, the two training sets are allowed to have an overlap
controlled by a parameter 𝜌

𝜌 = |R ∩ V||R| , (5.61)

where |.| denotes cardinality. For 𝜌 = 0, R and V are disjoined and for 𝜌 = 1, the clas-
sifiers and the ensemble are trained on a single set R = V . The authors found that better
results were obtained for 𝜌 = 0.5 compared to the two extreme values. This suggests
that a compromise should be sought when the initial data set Z is relatively small.

Stacked generalization has been defined as a generic methodology for improving
generalization in pattern classification [420]. We will present it here through an
example, as a protocol for training a classifier ensemble and its combiner.

◻◼ Example 5.7 Stacked generalization
Let Z be a data set with N objects partitioned into four parts of approximately equal
sizes, denoted A, B, C, and D. Three classifiers, D1, D2, and D3, are trained according
to the standard fourfold cross-validation protocol depicted in Figure 5.17. At the end
of this training, there will be four versions of each of the classifiers trained on (ABC),
(BCD), (ACD), or (ABD), respectively.

D2D1 D3

Part A

Part C

Part B

Part D

D2D1 D3

Part B

Part D

Part C

Part A

D2D1 D3

Part A

Part D

Part C

Part B

D2D1 D3

Part A

Part D

Part B

Part C

FOLD #1 FOLD #2 FOLD #3 FOLD #4

FIGURE 5.17 Standard 4-fold cross-validation set-up.
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The combiner is trained on a data set of size N obtained in the following way. For
any data point zj in subset A, we take the outputs for that point from the versions of
D1, D2, and D3 built on (BCD). In this way subset A has not been seen during the
training of the individual classifiers. The three outputs together with the label of zj
form a data point in the training set for the combiner. All the points from subset B
are processed by the versions of the three classifiers built on (ACD) and the outputs
added to the training set for the combiner, etc. After the combiner has been trained,
the four subsets are pooled again into Z and D1, D2, and D3 are re-trained, this time
on the whole of Z. The new classifiers and the combiner are then ready for operation.

Many authors have studied and compared the performance of ensemble combiners
[9, 109, 206, 321, 325, 337, 382, 383, 399, 400, 434]. Most of such studies, both
empirical and theoretical, do not elect a clear winner. This is to be expected in view
of the “no panacea theorem” [187]. The value of such comparative studies is to
accumulate knowledge and understanding of the conditions which could guide the
choice of a combiner. These conditions may be the type of data or the problem, as
well as the ensemble size, homogeneity, diversity, and building strategy.

APPENDIX

5.A.1 THEORETICAL CLASSIFICATION ERROR FOR THE
SIMPLE COMBINERS

5.A.1.1 Set-up and Assumptions

We reproduce the scenario and the assumption from the text.

� There are only two classes, Ω = {𝜔1,𝜔2}.
� All classifiers produce soft class labels, dj,i(x) ∈ [0, 1], i = 1, 2, j = 1,… , L,

where dj,i(x) is an estimate of the posterior probability P(𝜔i|x) by classifier Dj
for an input x ∈ ℝn. We consider the case where for any x, dj,1(x) + dj,2(x) = 1,
j = 1,… , L.

� Let x ∈ ℝn be a data point to classify. Without loss of generality, we assume
that the true posterior probability is P(𝜔1|x) = p > 0.5. Thus, the Bayes-optimal
class label for x is 𝜔1, and a classification error occurs if label 𝜔2 is assigned.

Assumption. The classifiers commit independent and identically distributed errors
in estimating P(𝜔1|x) such that

dj,1(x) = P(𝜔1|x) + 𝜂(x) = p + 𝜂(x), (5.A.1)

and respectively dj,2(x) = 1 − p − 𝜂(x), where 𝜂(x) has

(i) a normal distribution with mean 0 and variance 𝜎2 (we take 𝜎 to vary between
0.1 and 1)

(ii) a uniform distribution spanning the interval [−b,+b] (b varies from 0.1 to 1).
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We derive the theoretical error rate of an ensemble of L classifiers for a given object
x and the following combiners: majority vote, average (sum), minimum, maximum,
and median. For comparison, we include in the list the individual classifier error rate
and the so-called “oracle” combiner which outputs the correct class label if at least
one of the classifiers produces the correct class label.

Recall that, for the majority vote, we first “harden” the individual decisions by
assigning class label 𝜔1 if dj,1(x) > 0.5, and 𝜔2 if dj,1(x) ≤ 0.5, j = 1,… , L. Then the
class label most represented among the L (label) outputs is chosen as the final label
for x.

Denote by Pj the output of classifier Dj for class 𝜔1, that is, Pj = dj,1(x), and let

P̂1 =  (P1,… , PL) (5.A.2)

be the fused estimate of P(𝜔1|x). By assumption, the posterior probability estimates
for 𝜔2 are 1 − Pj, j = 1,… , L. The same fusion method  is used to find the fused
estimate of P(𝜔2|x),

P̂2 =  (1 − P1,… , 1 − PL). (5.A.3)

According to the assumptions, we regard the individual estimates Pj as inde-
pendent, identically distributed random variables, such that Pj = p + 𝜂j, with pdf
f (y), y ∈ ℝ and cumulative distribution functions (cdf) F(t), t ∈ ℝ. Then P̂1 is a ran-
dom variable with a pdf fP̂1

(y) and cdf FP̂1
(t).

For a single classifier, the average and the median fusion models will result in
P̂1 + P̂2 = 1. The higher of the two estimates determines the class label. The oracle
and the majority vote make decisions on the class label outputs, so P̂1 = 1, P̂2 = 0
for class 𝜔1, and P̂1 = 0, P̂2 = 1 for class 𝜔2. Thus, it is necessary and sufficient to
have P̂1 > 0.5 to label x in 𝜔1 (the correct label). The probability of error, given x,
denoted Pe, is

Pe = P(error|x) = P(P̂1 ≤ 0.5) = FP̂1
(0.5) =

∫

0.5

0
fP̂1

(y)dy (5.A.4)

for the single best classifier, average, median, majority vote, and the oracle.
For the minimum and the maximum rules, however, the sum of the fused estimates

is not necessarily one. The class label is then decided by the maximum of P̂1 and P̂2.
Thus, an error will occur if P̂1 ≤ P̂2,7

Pe = P(error|x) = P(P̂1 ≤ P̂2) (5.A.5)

for the minimum and the maximum.

7We note that since P̂1 and P̂2 are continuous-valued random variables, the inequalities can be written
with or without the equal sign, that is, P̂1 > 0.5 is equivalent to P̂1 ≥ 0.5, and so on.
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The two distributions considered are

� Normal distribution, P̂1 ∼ N(p, 𝜎2). We denote by Φ(z) the cumulative distribu-
tion function of N(0, 1). Then

F(t) = Φ
( t − p

𝜎

)
. (5.A.6)

� Uniform distribution within [p − b, p + b], that is,

f (y) =

{ 1
2b

, y ∈ [p − b, p + b];

0, elsewhere,
F(t) =

⎧⎪⎨⎪⎩
0, t ∈ (−∞, p − b);

t−p+b
2b

, t ∈ [p − b, p + b];

1, t > p + b.

(5.A.7)

Clearly, using these two distributions, the estimates of the probabilities might
fall outside the interval [0,1]. We can accept this, and justify our viewpoint by the
following argument. Suppose that p is not a probability but the amount of support for
𝜔1. The support for 𝜔2 will be again 1 − p. In estimating p, we do not have to restrict
Pjs within the interval [0, 1]. For example, a neural network (or any classifier for that
matter) trained by minimizing the squared error between its output and the zero-one
(class label) target function produces an estimate of the posterior probability for that
class (cf. [40]). Thus, depending on the parameters and the transition functions, a
neural network output (that approximates p) might be greater than 1 or even negative.
We take the L values (in ℝ) and fuse them by Equations 5.A.2 and 5.A.3 to get P̂1
and P̂2. The same rule applies: 𝜔1 is assigned by the ensemble if P̂1 > P̂2. Then we
calculate the probability of error Pe as P(P̂1 ≤ P̂2). This calculation does not require
in any way that Pjs be probabilities or be within the unit interval.

5.A.1.2 Individual Error

Since FP̂1
(t) = F(t), the error of a single classifier for the normal distribution is

Pe = Φ
(

0.5 − p

𝜎

)
, (5.A.8)

and for the uniform distribution,

Pe =
0.5 − p + b

2b
. (5.A.9)

5.A.1.3 Minimum and Maximum

These two fusion methods are considered together because, as shown in the text, they
are identical for c = 2 classes and any number of classifiers L.

Substituting  = max in Equation 5.A.2, the ensemble’s support for 𝜔1 is P̂1 =
maxj{Pj}. The support for 𝜔2 is therefore P̂2 = maxj{1 − Pj}. A classification error
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will occur if

max
j

{Pj} < max
j

{1 − Pj}, (5.A.10)

p + max
j

{𝜂j} < 1 − p − min
j

{𝜂j}, (5.A.11)

𝜂max + 𝜂min < 1 − 2p. (5.A.12)

The probability of error for the minimum and maximum methods is

Pe = P
(
𝜂max + 𝜂min < 1 − 2p

)
(5.A.13)

= F
𝜂s

(1 − 2p), (5.A.14)

where F
𝜂s

(t) is the cdf of the random variable s = 𝜂max + 𝜂min. For the normally

distributed Pjs, 𝜂j are also normally distributed with mean 0 and variance 𝜎2. However,
we cannot assume that 𝜂max and 𝜂min are independent and analyze their sum as another
normally distributed variable because these are order statistics and 𝜂min ≤ 𝜂max. We
have not attempted a solution for the normal distribution case.

For the uniform distribution, we follow an example taken from [285] where the
pdf of the midrange (𝜂min + 𝜂max)∕2 is calculated for L observations. We derive F

𝜂s
(t)

to be

F
𝜂s

(t) =
⎧⎪⎨⎪⎩

1
2

(
t

2b
+ 1
)L

, t ∈ [−2b, 0];

1 − 1
2

(
1 − t

2b

)L
, t ∈ [0, 2b].

(5.A.15)

Noting that t = 1 − 2p is always negative,

Pe = F
𝜂s

(1 − 2p) = 1
2

(
1 − 2p

2b
+ 1

)L

. (5.A.16)

5.A.1.4 Average (Sum)

The average combiner gives P̂1 = 1
L

∑L
j=1 Pj. If P1,… , PL are normally distributed

and independent, then P̂ ∼ N
(

p, 𝜎
2

L

)
. The probability of error for this case is

Pe = P(P̂1 < 0.5) = Φ

(√
L(0.5 − p)

𝜎

)
. (5.A.17)

The calculation of Pe for the case of uniform distribution is not that straightforward.
We can assume that the sum of L independent variables will result in a variable of
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approximately normal distribution. The higher the L, the more accurate the approx-

imation. Knowing that the variance of the uniform distribution for Pj is b2

3
, we can

assume that P̂ ∼ N
(

p, b2

3L

)
. Then

Pe = P(P̂1 < 0.5) = Φ

(√
3L(0.5 − p)

b

)
. (5.A.18)

5.A.1.5 Median and Majority Vote

These two fusion methods are pooled because they are identical for the current set-up
(see the text). Since only two classes are considered, we restrict our choice of L to odd
numbers only. An even L is inconvenient for at least two reasons. First, the majority
vote might tie. Second, the theoretical analysis of a median which is calculated as the
average of the (L∕2) and (L∕2 + 1) order statistics is cumbersome.

For the median fusion method

P̂1 = med{P1,… , PL} = p + med{𝜂1,… , 𝜂L} = p + 𝜂m. (5.A.19)

Then the probability of error is

Pe = P(p + 𝜂m < 0.5) = P(𝜂m < 0.5 − p) = F
𝜂m

(0.5 − p), (5.A.20)

where F
𝜂m

is the cdf of 𝜂m. From the order statistics theory [285],

F
𝜂m

(t) =
L∑

j= L+1
2

(
L
j

)
F
𝜂
(t)j[1 − F

𝜂
(t)]L−j, (5.A.21)

where F
𝜂
(t) is the cdf of 𝜂j, that is, N(0, 𝜎2) or uniform in [−b, b]. We can now

substitute the two respective cdf, to obtain Pe

� for the normal distribution

Pe =
L∑

j= L+1
2

(
L
j

)
Φ
(

0.5 − p

𝜎

)j [
1 − Φ

(
0.5 − p

𝜎

)]L−j

. (5.A.22)

� for the uniform distribution

Pe =
⎧⎪⎨⎪⎩

0, p − b > 0.5;∑L
j= L+1

2

(L
j

) ( 0.5−p+b
2b

)j [
1 − 0.5−p+b

2b

]L−j
, otherwise.

(5.A.23)



SELECTED MATLAB CODE 183

The derivation of these two equations is explained below. The majority vote will
assign the wrong class label, 𝜔2, to x if at least L+1

2
classifiers vote for 𝜔2. The

probability that a single classifier is wrong is given by Equation 5.A.8 for the normal
distribution and Equation 5.A.9 for the uniform distribution. Denote this probability
by Ps. Since the classifiers are independent, the probability that at least L+1

2
are wrong

is calculated by the binomial formula

Pe =
L∑

j= L+1
2

(
L
j

)
Pj

s(1 − Ps)
L−j

. (5.A.24)

By substituting Ps from Equations 5.A.8 and 5.A.9, we recover Equations 5.A.22 and
5.A.23 for the normal and the uniform distribution, respectively.

5.A.1.6 Oracle

The probability of error for the oracle is

Pe = P(all incorrect) = F(0.5)L
. (5.A.25)

For the normal distribution

Pe = Φ
(

0.5 − p

𝜎

)L

, (5.A.26)

and for the uniform distribution

Pe =

{
0, p − b > 0.5;(

0.5−p+b
2b

)L
, otherwise.

(5.A.27)

5.A.2 SELECTED MATLAB CODE

Example of the LDC for the Fish Data

The code below generates and plots the data and the 50 linear classification bound-
aries of the random base classifiers. The LDC combiner is trained on the training
data, which consists of all points on the grid, with 20% label noise. The posterior
probabilities for class 𝜔1 are calculated by line 35, using the softmax formula. The
points labeled by the ensemble as class fish (black dots) are circled. The code needs
the function fish_data from Chapter 2, and the statistics toolbox of MATLAB for
the classify function. An example of the output is shown in Figure 5.A.1
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LDC combiner accuracy 0.9508

FIGURE 5.A.1 MATLAB output for the LDC combiner and the fish data.

1 %---------------------------------------------------------%
2 clear all, close all
3 clc
4

5 % Generate and plot the data
6 [~ , ~,labtrue] = fish_data(50,0);
7 % Generate labels with 20% noise
8 [x,y,lb] = fish_data(50,20); figure, hold on
9 plot(x(lb == 1),y(lb == 1),'k.','markers',14)

10 plot(x(lb == 2),y(lb == 2),'k.','markers',14,...
11 'color',[0.87, 0.87, 0.87])
12 axis([0 1 0 1]) % cut the figure to the unit square
13 axis square off % equalize and remove the axes
14

15 % Generate and plot the ensemble of linear classifiers
16 L = 50; % ensemble size
17 N = numel(x); % number of data points
18 [ensemble,P1] = deal(zeros(N,L)); % pre-allocate for speed
19 sc = 1; % scaling constant for the softmax function
20 for i = 1:L
21 p = rand(1,2); % random point in the unit square
22 w = randn(1,2); % random normal vector to the line
23 w0 = p * w'; % the free term (neg)
24 plot([0 1],[w0, (w0-w(1))]/w(2),'r-',...
25 'linewidth',1.4) % plot the linear boundary
26 plot(p(1),p(2),'r.','markersize',15)
27 pause(0.03)
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28 t = 2 - ([x y] * w' - w0 > 0);
29 if mean(t == lb) < 0.5, t = 3-t; end % revert labels
30

31 % Posteriors
32 ou = [x y] * w' - w0;
33 % Store the estimates of the probability for class 1
34 P1(:,i) = 1./(1 + exp(-ou * sc)); % softmax
35

36 end
37

38 % Find and plot the LDC combiner output
39 assigned_labels = classify(P1,P1,lb);
40 % (train with the noisy labels)
41 accuracy_LDC = mean(assigned_labels == labtrue);
42 plot(x(assigned_labels==1),y(assigned_labels==1),...
43 'bo','linewidth',1.5)
44 title(['LDC combiner accuracy ',num2str(accuracy_LDC)])
45 %---------------------------------------------------------%



6
ENSEMBLE METHODS

6.1 BAGGING

6.1.1 The Origins: Bagging Predictors

Breiman introduced the term bagging as an acronym for Bootstrap AGGregatING
[46]. The idea of bagging is simple and appealing: the ensemble is made of classifiers
built on bootstrap replicates of the training set. The classifier outputs are combined
by the plurality vote [47].

The diversity necessary to make the ensemble work is created by using different
training sets. Ideally, the training sets should be generated randomly from the dis-
tribution of the problem. In practice, we can only afford one labeled training set,
Z = {z1,… , zN}, and have to imitate the process or random generation of L training
sets. We sample with replacement from the original training set (bootstrap sampling
[115]) to create a new training set of length N. To make use of the variations of the
training set, the base classifier should be unstable. In other words, small changes
in the training set should lead to large changes in the classifier output. Otherwise,
the resultant ensemble will be a collection of almost identical classifiers, therefore
unlikely to improve on a single classifier’s performance. Figure 6.1 shows the training
and operation of bagging.

How large should a bagging ensemble be? Breiman found that 25–50 decision
trees are sufficient to get the ensemble error to level off [47]. Practice has shown
that this rule of thumb works for a large variety of classifier models and over many
different application domains [181, 293].

Combining Pattern Classifiers: Methods and Algorithms, Second Edition. Ludmila I. Kuncheva.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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BAGGING ENSEMBLE

Training: Given is a labeled data set Z = {z1,… , zN}.

1. Choose the ensemble size L and the base classifier model.
2. Take L bootstrap samples from Z and train classifiers D1,… , DL, one classifier on each

sample.

Operation: For each new object

1. Classify the new object x by all classifiers D1,… , DL.
2. Taking the label assigned by classifier Di to be a “vote” for the respective class, assign

to x the class with the largest number of votes.

Return the ensemble label of the new object.

FIGURE 6.1 Training and operation algorithm for the bagging ensemble.

Bagging is a parallel algorithm in both its training and operational phases. The
L ensemble members can be trained on different processors if needed. A MATLAB
example of bagging is given in Appendix 6.A.1.

6.1.2 Why Does Bagging Work?

If the classifier outputs were independent, and the classifiers had the same individual
accuracy p, then the majority vote is guaranteed to improve on the individual perfor-
mance [250]. Bagging aims at developing independent classifiers by taking bootstrap
replicates as the training sets. The samples are pseudo-independent because they are
taken from the same Z. However, even if they were drawn independently from the
distribution of the problem, the classifiers built on these training sets might not give
independent outputs.

◻◼ Example 6.1 Independent and bootstrap samples
The data for this example was the rotated checker board data (Figure 1.8 in Chapter 1).
A training set of 100 points and a testing set of 1000 points were generated 50 times
with parameters a = 0.5 (side) and 𝛼 = −𝜋∕3 (rotation angle). Bagging was run with
decision trees as the base classifier.1 The trees were pre-pruned using a fixed threshold
𝜃 = 3. To evaluate the effect of bootstrap sampling we ran the same experiment but
instead of bootstrap samples of the training set we generated a new training set of
100 objects for each new member of the ensemble.

The purpose of the example is to examine to what extent bootstrap sampling
induces dependence between the individual classifiers compared to independent sam-
pling. We also show how this dependence translates into a higher ensemble error.

1We used the MATLAB code from Chapter 2.
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FIGURE 6.2 Correlation and error rate for the bagging ensemble versus the ensemble size
for the rotated checker board data, using bootstrap samples and independent samples.

The correlation between oracle classifier outputs (correct/wrong labels) is one
possible measure of dependence. The correlation between the outputs of classifiers
Di and Dj is calculated as

𝜌i,j =
N11N00 − N01N10√

(N11 + N10)(N01 + N00)(N11 + N01)(N10 + N00)
, (6.1)

where Nab is the number of objects in the testing set for which classifier Di gives
output a and classifier Dj gives output b, where a, b ∈ {0, 1}. To get a single value
measuring the correlation for the whole ensemble, �̄�, the pairwise correlations were
averaged.

Figure 6.2a shows the ensemble correlation �̄�, averaged over the 50 repetitions, as
a function of the ensemble size L. The error bars depict 95% confidence intervals of
the estimate ( 1.96√

50
× standard deviation). Figure 6.2b shows the ensemble error rate

averaged over the 50 repetitions.
The plots show that, as expected, the correlation between classifiers built on

true independent samples is lower than that produced by bagging. Observe that the
correlation for the true independent samples is not zero, which demonstrates that the
outputs of classifiers built on independent samples might be dependent.

We can think of the ensembles with lower correlation as more diverse than those
with higher correlation. Figure 6.2b shows the benefit of having more diverse ensem-
bles. The base classifiers are the same, the pruning method is the same, the combiner
is the same (majority vote) but the error rates are different. The improved error rate
can therefore be attributed to higher diversity in the ensemble that uses independently
generated training sets. We shall see later that the concept of diversity is not as simple
and straightforward as it looks here.

Domingos [101] examines two hypotheses about bagging in the framework of
Bayesian learning theory. The first hypothesis is that bagging manages to estimate the
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posterior probabilities for the classes P̂(𝜔i|x). According to this model, the estimated
posterior probability that the class label for the given x is 𝜔i, given the training set Z,
is averaged across all classifiers. Using dj,i(x) to denote the estimate of P(𝜔i|x) given
by classifier Dj, we have

P̂(𝜔i|x, Z) =
L∑

j=1

P̂(𝜔i|x, Dj, Z)P̂(Dj|Z) =
L∑

j=1

dj,i(x) P̂(Dj|Z). (6.2)

Take dj,i(x) to be the zero-one output indicating a (hard) class label. For example,
in a four-class problem, a classifier output 𝜔3 corresponds to dj,3(x) = 1 and dj,1(x) =
dj,2(x) = dj,4(x) = 0. If we set all the model (posterior) probabilities P(D|Z) to 1

L
, we

obtain the plurality voting combination which is the traditional combiner for bagging.
Domingos also looks at soft class labels and chooses P̂(Dj|Z) so that the combiner is
equivalent to simple averaging and weighted averaging. The hypothesis that bagging
develops a better estimate of the posterior probabilities within this Bayesian context
was not supported by Domingos’ experiments [101].

The second hypothesis obtained better empirical support. According to it, bagging
shifts the prior distribution of the classifier models toward models that have higher
complexity (as the ensemble itself). Such models are assigned a larger likelihood of
being the “right” model for the problem. The ensemble is in fact a single (complex)
classifier picked from the new distribution.

Domingos’ conclusions are matched by an argument in Ref. [352] where the
authors challenge the common intuition that voting methods work because they
“smooth out” the estimates. They advocate the thesis that voting in fact increases the
complexity of the system.

6.1.3 Out-of-bag Estimates

As mentioned in Chapter 1, a bootstrap sample of size N from N data points will
leave about 37% of the data out of the sample. These data points are called out-
of-bag. A proportion of the L classifiers in the ensemble, say M < L, will not have
seen an object x in their training set. Then x can be used to estimate the error of the
ensemble of these M classifiers. For each zj in the training data set, there would be an
individual sub-ensemble of classifiers for which zj is an out-of-bag object. If we score
the ensemble error on each object in the training data, we can have an estimate of the
generalization error of the ensemble. The only caveat here is that the error estimate
will refer to a smaller ensemble, and may therefore be slightly pessimistically biased,
especially for smaller ensembles [50].

◻◼ Example 6.2 Out-of-bag estimate of the ensemble error
Using the same experimental set-up as in the previous example with threshold 𝜃 = 1
(less pruning), the out-of-bag estimate was calculated for each ensemble. Figure 6.3
shows the independent testing error and the out-of-bag error for the checker board
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FIGURE 6.3 Independent testing error and out-of-bag error for the checker board data and
different ensemble sizes.

data and different ensemble sizes. The error bars depict a 95% confidence interval of
the estimate. The higher out-of-bag error curve demonstrates the pessimistic bias of
the estimate for small ensemble sizes.

6.1.4 Variants of Bagging

Breiman [49] suggests using the so-called small votes whereby the individual classi-
fiers are trained on relatively small subsets of the training set called “bites” [68]. The
training sets are sampled from the large data set either randomly, called Rvotes, or
based on importance, called Ivotes [68]. A cascade procedure for filtering the training
sets for an ensemble of three neural networks is proposed by Drucker et al. [104]. The
small vote ensembles are suitable for large labeled data sets, where the optimization
of the computational resources is important.

Skurichina [369] proposes a variant of bagging which she calls “nice” bagging.
Instead of taking all L classifiers, we only accept classifiers whose training error is
smaller than the error made by an individual classifier built on the whole data set. In
fact, we may again consider an ensemble of L classifiers by dismissing in the training
process the classifiers whose training error is above the threshold and continuing until
the ensemble size reaches L. Bagging and “nice” bagging have been found to work
for unstable LDC [369]. Many other bagging variants have been proposed, among
which are the double bagging [186] and asymmetric bagging [381].

6.2 RANDOM FORESTS

In 2001, Breiman proposed a variant of bagging which he calls a random forest [50].
Random forest is a general class of ensemble-building methods using a decision tree
as the base classifier.
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Definition. [50] A random forest is a classifier consisting of a collection of tree-
structured classifiers, each tree grown with respect to a random vector Θk, where Θk,
k = 1,… , L, are independent and identically distributed. Each tree casts a unit vote
for the most popular class at input x.

According to this definition, a random forest could be built by sampling from the
feature set, from the data set, or just varying randomly some of the parameters of
the tree. Any combination of these sources of diversity will also lead to a random
forest. For example, we may sample from the feature set and from the data set as
well [254].

The classical random forest could be thought of as a version of bagging where
the base classifier is a random tree, introduced in Chapter 2. Along with selecting
bootstrap samples from the training data, random feature selection is carried out at
each node of the tree. We choose randomly a subset S with M features from the
original set of n features, and seek within S the best feature to split the node. A
feature subset is selected anew for each node. Breiman suggests to grow a full CART
tree (no pruning). The recommended value of M is ⌊log2 n + 1⌋ [50].

The random forest heuristic is meant to diversify the ensemble. Alternative
approaches include fuzzy trees [43] and random feature weights [278]. Some accu-
racy of the decision tree may be sacrificed but this pays off through the increased
diversity. Indeed, random forest has been the classifier of choice in many appli-
cation areas such as remote sensing [157, 168, 299], chemistry [378], ecology
[79], and medical data analysis [191, 228]. Recent applications include motion
and pose recognition from depth images, which is becoming a core component
of the Kinect gaming platform [364]. The random forest ensemble method has been
implemented for research purposes in R programing language [259] as well as in
WEKA [167].

◻◼ Example 6.3 Bagging and random forest
For now, we will only illustrate the difference between the performance of a bagging
ensemble and a random forest ensemble. Measuring the diversity will be discussed
in Chapter 8.

Consider the letter data set (N = 20, 000 objects, n = 16 features, c = 26 classes).
The data was split into 50% training and 50% testing parts. The base classifiers
were trained on the whole training set, and majority vote (plurality) was applied to
aggregate the individual outputs. The ensemble error was evaluated on the testing
data. This procedure was repeated 10 times. Figure 6.4 shows the ensemble error rate,
averaged over the 10 repetitions, for the bagging and the random forest ensembles
and different ensemble sizes.

The figure shows that, for this data set, random forest outperforms bagging for
large ensemble sizes. The inferior performance for small L is likely due to the fact
that the individual classifiers may not have had access to all features, hence their error
rate would be higher.

For this experiment, we used the MATLAB functions bagging_train and bag-
ging_classify shown in Appendix 6.A.1.
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FIGURE 6.4 Ensemble error for bagging and random forest for the letter data set.

6.3 ADABOOST

The boosting family of algorithms have secured a top spot in the rank list of ensemble
methods due to their accuracy, robustness, and wide applicability. They have been
pronounced the “most accurate available off-the-shelf classifiers on a wide variety of
data sets” [48]. AdaBoost was the only ensemble method featured among the “Top 10
algorithms in data mining” by Wu et al. [422]. A lot of enlightening research literature
is devoted to these methods, including Schapire and Freund’s recent monograph [351].
In 2003, the two authors received the prestigious Goedel Prize (Theoretical Computer
Science) for their AdaBoost algorithm. Here we will look at the basic algorithm and
several variants, without reproducing the rich and lively theoretical and empirical
arguments explaining why boosting works so well.

6.3.1 The AdaBoost Algorithm

Boosting is defined in Ref. [134] as related to the “general problem of produc-
ing a very accurate prediction rule by combining rough and moderately inaccurate
rules-of-thumb.” The general boosting idea is to develop the classifier ensemble 

incrementally, adding one classifier at a time. The classifier that joins the ensemble
at step k is trained on a data set selectively sampled from the training data set Z.
The sampling distribution starts from uniform, and is updated for each new classifier.
The likelihood of the objects being misclassified at step k − 1 is increased so that
they have a higher chance of entering the training sample of the next classifier. The
algorithm is called AdaBoost in Ref. [134] which comes from ADAptive BOOSTing.

There are two implementations of AdaBoost: with reweighting and with resam-
pling. The description above refers to the resampling implementation. For the
reweighting implementation we assume that the base classifiers can directly use
the probabilities on Z as weights. No sampling is needed in this case, so the
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ADABOOST.M1 (training)

Training: Given is a labeled data set Z = {z1,… , zN}.

1. Choose the ensemble size L and the base classifier model.
2. Set the weights w1 = [w1

1,… , w1
N ], w1

j ∈ [0, 1],
∑N

j=1 w1
j = 1.

(Usually w1
j = 1

N
, j = 1,… , N).

3. For k = 1,… , L

(a) Take a sample Sk from Z using distribution wk.

(b) Build a classifier Dk using Sk as the training set.

(c) Calculate the weighted ensemble error at step k by

𝜖k =
N∑

j=1

wk
j lj

k, (6.3)

(
l j
k = 1 if Dk misclassifies zj and ljk = 0 otherwise

)
.

(d) If 𝜖k = 0, reinitialize the weights wk
j to 1

N
and continue.

i. Else if 𝜖k ≥ 0.5, ignore Dk, reinitialize the weights wk
j to 1

N
and continue.

ii. else, calculate

𝛽k =
𝜖k

1 − 𝜖k

, where 𝜖k ∈ (0, 0.5), (6.4)

and update the individual weights

wk+1
j =

wk
j 𝛽

(1−lj
k
)

k∑N
i=1 wk

i 𝛽
(1−li

k
)

k

, j = 1,… , N. (6.5)

4. Return  = {D1,… , DL} and 𝛽1,… , 𝛽L.

FIGURE 6.5 Training algorithm for AdaBoost.M1.

algorithm becomes completely deterministic. There is no strong evidence favoring
one of the versions over the other [48, 134, 135].

AdaBoost was proposed initially for two classes and then extended for multi-
ple classes. Figures 6.5 and 6.6 show, respectively, the training and operation of
AdaBoost.M1, which is the most straightforward multi-class extension of AdaBoost
[134]. Here we give the resampling implementation.

◻◼ Example 6.4 Illustration of AdaBoost
The performance of the AdaBoost algorithm is illustrated on the fish data. The
experimental set-up was: 50 runs with a training set with 20% label noise and the
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ADABOOST.M1 (operation)

Operation: For each new object

1. Classify the new object x by all classifiers D1,… , DL.
2. Calculate the support for class 𝜔t by

𝜇t(x) =
∑

Dk(x)=𝜔t

ln
(

1
𝛽k

)
. (6.6)

3. The class with the maximum support is chosen as the label for x.

Return the ensemble label of the new object.

FIGURE 6.6 Operation algorithm for AdaBoost.M1.

nondistorted data as the testing set. The base classifier was the nonpruned decision
tree. The testing error averaged across the 50 runs is shown in Figure 6.7. For
comparison we also show the bagging ensemble error rate.

6.3.2 The arc-x4 Algorithm

Breiman studies bagging and boosting from various curious angles in Ref. [48]. He
calls the class of boosting algorithms arcing algorithms as an acronym for “Adaptive
Resample and Combining.” His arc-fs algorithm is AdaBoost (named “fs” after its
authors Freund and Schapire [134]). Breiman proposed a boosting algorithm called
arc-x4 to investigate whether the success of AdaBoost roots in its technical details
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FIGURE 6.7 Testing error of AdaBoost and bagging versus the ensemble size for the fish
data set.
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ARC-X4

Training: Given is a labeled data set Z = {z1,… , zN}.

1. Choose the ensemble size L and the base classifier model.
2. Set the weights w1 = [w1

1,… , w1
N ], w1

j ∈ [0, 1],
∑N

j=1 w1
j = 1.

(
Usually w1

j = 1

N

)
.

3. For k = 1,… , L

(a) Take a sample Sk from Z using distribution wk.

(b) Build a classifier Dk using Sk as the training set.

(c) Find mj as the proportion of classifiers currently in the ensemble which misclassify
zj. Update the individual weights

wk+1
j =

1 + m4
j∑N

i=1 1 + m4
i

, j = 1,… , N. (6.7)

Operation: For each new object

1. Classify the new object x by all classifiers D1,… , DL.
2. Taking the label assigned by classifier Di to be a “vote” for the respective class, assign

to x the class with the largest number of votes.

Return the ensemble label of the new object.

FIGURE 6.8 Training and operation algorithm for arc-x4.

or in the resampling scheme it uses. The difference between AdaBoost and arc-x4
is twofold. First, the weight for object zj at step k is calculated as the proportion of
times zj has been misclassified by the k − 1 classifiers built so far. Second, the final
decision is made by plurality voting rather than weighted majority voting. The arc-x4
algorithm is described in Figure 6.8.

The parameter of the algorithm, the power of mj (Figure 6.8), has been fixed
to the constant 4 (hence the name) by a small experiment. Breiman compared the
behaviors of AdaBoost and arc-x4 and found that AdaBoost makes more abrupt
moves while arc-x4 has a more gradual behavior, both showing a similar overall
performance. This is reflected, for example, in the standard deviations of the weights
assigned to a single data point. This was found to be much larger for AdaBoost
than for arc-x4. Breiman concludes that the two boosting variants could be on the
two edges of a scale, and new even more successful algorithms could be found
in-between [48].

6.3.3 Why Does AdaBoost Work?

One of the explanations for the success of AdaBoost comes from the algorithm’s
property to drive the training error to zero very quickly, practically in the first few
iterations.
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6.3.3.1 The Upper Bound on the Training Error Freund and Schapire prove an
upper bound on the training error of AdaBoost [134]. The following theorem gives
their result:

Theorem 6.1 Let Ω = {𝜔1,… ,𝜔c}. Let 𝜖 be the ensemble training error and let
𝜖i, i = 1,… , L be the weighted training errors of the classifiers in  as in Equation
(6.3) where 𝜖i < 0.5. Then

𝜖 < 2L
L∏

i=1

√
𝜖i(1 − 𝜖i). (6.8)

This theorem indicates that, by adding more classifiers with individual error smaller
than 0.5, the training error of the ensemble approaches zero. Freund and Schapire
argue that the 0.5 threshold is too strict a demand for a multiple-class weak learner.
They proceed to propose another version of AdaBoost, called AdaBoost.M2 which
does not require 𝜖i < 0.5 [134]. Note that 𝜖i is not the error of classifier Di; it is a
weighted error. This means that if we applied Di on a data set drawn from the problem
in question, its (conventional) error could be different from 𝜖i, it could be larger or
smaller.

6.3.3.2 The Margin Theory Experiments with AdaBoost showed an unexpected
phenomenon: the testing error continues to decrease with adding more classifiers even
after the training error reaches zero. This prompted another look into the possible
explanations and brought forward the margin theory [135, 352].

The concept of margins (see Chapter 2) comes from the statistical learning theory
[402] in relation to the Vapnik–Chervonenkis dimension (VC dimension). In layman’s
terms, the VC dimension gives an upper bound on the classification ability of classifier
models. Although the bound is loose, it has proven to be an important theoretical
accessory in pattern recognition and machine learning. Intuitively, the margin for an
object is related to the certainty of its classification. Objects for which the assigned
label is correct and highly certain will have large margins. Negative margins signify
incorrect classification. Objects with uncertain classification are likely to have small
margins. A small margin will cause instability of the classification label, that is, the
object might be assigned to different classes by two similar classifiers.

For c classes, the classification margin (also ensemble margin or voting margin)
of object x is calculated using the degrees of support 𝜇j(x), j = 1,… , c, as

m(x) = 𝜇k(x) − max
j≠k

{𝜇j(x)}, (6.9)

where 𝜔k is the (known) class label of x and
∑c

j=1 𝜇j(x) = 1.
Thus all objects which are misclassified will have negative margins, and those

correctly classified will have positive margins. Trying to maximize the margins
(called boosting the margins) will intuitively lead to “more confident” classifiers.
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FIGURE 6.9 Margin distribution graphs for bagging and AdaBoost for the fish data.

Schapire et al. [352] prove upper bounds (loose) on the testing error which depend
on the classification margin.

◻◼ Example 6.5 AdaBoost and ensemble margins
To illustrate the effect of bagging and AdaBoost on the margins, we ran both algo-
rithms for the fish data with 20% label noise and ensembles with L = 11 classifiers.
The margins were calculated according to Equation 6.9. Figure 6.9 shows the margin
distribution graphs for AdaBoost and bagging for two base classifier models. The
x-axis is the margin m, and the y-axis is the number of points whose margin is
less than or equal to m. If all training points are classified correctly, there will be
only positive margins. Ideally, all points should be classified correctly and with the
maximum possible certainty, that is, the cumulative graph should be a single vertical
line at m = 1. Figure 6.9 shows the margin distribution graphs for bagging and
AdaBoost.2 AdaBoost gives lower classification error for both classifiers. Its margin
curve is entirely underneath the curve for the bagging ensemble with the decision
tree base classifier, demonstrating the superiority of the algorithm. However, bagging
shows a better curve in the positive margin’s range for the Naı̈ve Bayes classifier.

The difference between AdaBoost and bagging can be illustrated further by the
distribution from which the samples are drawn. While bagging is expected to have a
uniform coverage of the available data, AdaBoost is likely to favor difficult objects,
as illustrated by the example below.

◻◼ Example 6.6 Heat map of AdaBoost sampling distribution
The fish data was used again with 10% label noise. The ensemble size was set
at L = 101 in order to have a reasonable estimate of the sampling distribution of

2In bagging, the support for class 𝜔j, 𝜇j(x) was calculated as the proportion of votes for that class.
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(a) Fish data, 10% label noise (b) Bagging (any base classifier)

FIGURE 6.10 Heat map of the sampling distribution for bagging for the fish data (L = 101).
Error with the Naiv̈e Bayes base classifier was 27.76% and with the decision tree classifier,
2.52%.

AdaBoost and bagging. Figures 6.10 and 6.11 show the heat maps for the two
ensemble methods, for the Naı̈ve Bayes classifier, and the (nonpruned) decision tree
classifier. The noise points are circled. Dark color signifies an often selected point.

The resampling for AdaBoost depends on the base classifier because the subse-
quent resampling distributions are determined by the previously misclassified objects.
Hence there are two distribution plots in Figure 6.11. The bagging resampling, on
the other hand, does not depend on the outcome of the previous classifiers, therefore
there is only one distribution pattern as shown in Figure 6.10b.

(a) AdaBoost with NB classifier (b) AdaBoost with decision tree classifier

FIGURE 6.11 Heat map of the sampling distribution for AdaBoost for the fish data (L =
101). Error with the Naı̈ve Bayes base classifier was 23.04% and with the decision tree
classifier, 5.28%.
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As expected, bagging covers the data space uniformly. AdaBoost, on the other
hand, demonstrates a clear nonuniform pattern. In both plots in Figure 6.11, the
label noise is among the most often selected points. This illustrates the tendency of
AdaBoost to focus on noise. While this tendency has been regarded as a drawback of
AdaBoost, in some cases such isolated points are valid islands of data which should
not be ignored.

There is a notable difference between the patterns in the two subplots in Figure
6.11. The Naı̈ve Bayes classifier persistently mislabels parts of the classification
regions of the two classes, forcing AdaBoost to keep sampling from these regions, as
shown by the darker patches. This parallel gives an insight into stable and unstable
base classifiers. Being a stable classifier, NB fails on the same training objects, and
these are repeatedly selected by AdaBoost in the subsequent training samples. Such
a pattern does not exist for the decision tree classifier. The ensemble error rate for
both bagging and AdaBoost is by an order of magnitude smaller for the unstable base
classifier—the decision tree.

6.3.3.3 Bias and Variance Reduction The results of extensive experimental stud-
ies can be summarized as follows: bagging is assumed to reduce variance without
changing the bias. However, it has been found to reduce the bias as well, for some
high-bias classifiers. AdaBoost has different effects at its different stages. At its early
iterations boosting primarily reduces bias while at the later iterations it has been
found to reduce mainly variance [29, 48, 96, 102, 135, 352, 396].

Freund and Schapire [135] argue that bias–variance decomposition is not the
appropriate analysis tool for boosting, especially boosting with reweighting. Their
explanation of the success of AdaBoost is based on the margin theory. Schapire et al.
[352] state that it is unlikely that a “perfect” theory about voting methods exists, that
is, a theory applicable to any base classifier and any source of independent identically
distributed labeled data. Friedman et al. note that in practice, boosting achieves results
far more impressive than the theoretical bounds and analyses would imply [136].

Many authors have compared bagging and AdaBoost including some large-scale
experiments [29, 48, 94, 95, 319]. The general consensus is that boosting reaches
lower testing error in spite of its sensitivity to noise and outliers, especially for small
data sets [29, 48, 319].

6.3.4 Variants of Boosting

There is a great variety of methods drawn upon the basic idea of boosting. The
majority of these address the sensitivity of AdaBoost to noise or alter the optimization
criterion. Table 6.1 gives a chronological list of some AdaBoost variants.

For further reading, consider the monographs by Schapire and Freund [351] and
Zhou [439].

6.3.5 A Famous Application: AdaBoost for Face Detection

Viola and Jones’s algorithm for detecting a face in a still image [405] has been
recognized as one of the most exciting breakthroughs in computer vision. The detector
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TABLE 6.1 AdaBoost Variants (Classification Task)

Year Name

1997 AdaBoost [134]
1998 Arc-x4 [48]
1999 AdaBoost.MH [350], AdaCost [66], DynaBoost [283]
2000 Real AdaBoost, LogitBoost, Gentle AdaBoost [136],

MultiBoost [412], DOOM [274], MadaBoost [100]
2001 Agnostic boosting [32], BrownBoost [131], ATA, AdaBoost-reg [323],

FloatBoost [257]
2002 AdaBoost.M1W [117], LPBoost [88], Stochastic gradient boosting [138]
2003 Smooth boosting [356], L2Boost [59], SMOTEBoost [69],

AdaBoost-VC [267], AveBoost [296]
2004
2005 AdaBoost.M2 [118, 133], Martingale boosting [266]
2006 TotalBoost [411], SAMME [441], MPBoost [125], MutualBoost [362]
2007 One-pass boosting, Picky AdaBoost [27]
2008 RotBoost [435], FilterBoost [45]
2009 RobustBoost [132]
2010 RUSBoost [354], Twin boosting [60]
2011
2012 SampleBoost [2]
2013 POEBoost [114]

scans the image, sliding a square window and classifying it as positive (face) or
negative (nonface). The procedure is run at several different magnifications of the
image. The detector is a cascade of AdaBoost ensembles. Each ensemble is trained
using decision stumps, selecting from a large set of Haar-like features. The beauty
of the Viola–Jones detector lies in the simple way of calculating the image features
and the quick labeling of negative windows in the first steps of the classification
cascade. This makes the method significantly faster than other similar face detection
methods.

The method uses three types of features, shown diagrammatically in Figure 6.12.
The features are calculated from the gray level intensities of the image. The value of
a “two-rectangle” feature is the difference between the sum of the pixels within two
rectangular regions. The regions have the same size and shape and are horizontally
or vertically adjacent. If the sums of the gray level intensities are denoted by a and b,

a

b
a b c

a b

c d

two-rectangle three-rectangle four-rectangle

FIGURE 6.12 The three types of Haar-like features used in Viola–Jones face detector.
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… 24 features … 8 features

… 6 features

… 18 features

… 12 features

2 features

… 6 features … 4 features

Total: 80
two-rectangle
features

FIGURE 6.13 The two-rectangle Haar-like features for a window of size 4 × 4.

respectively, the value of the feature is a − b. The value of a “three-rectangle” feature,
shown in the middle plot, is b − (a + c). The value of the “four-rectangle” feature is
(a + d) − (b + c).

The detector works with a window of size 24 × 24 pixels, which gives rise to over
160,000 features. As an example, Figure 6.13 shows the 80 possible two-rectangle
features for a window of size 4 × 4. The authors propose a clever way for a fast
calculation of these features using an integral image.

Each feature is regarded as a classifier itself. The class label is obtained by
thresholding the value. Thus, AdaBoost with decision stumps serves as a method for
feature selection [405]. The cascade detector is designed to take advantage of the fact
that the overwhelming majority of windows in an image are negative. It operates as
shown in Figure 6.14.

The training process goes through the following steps:

1. Choose the target false positive rate Ftarget and the acceptable false positive and
false negative rates for the cascade stages.

2. Obtain a data set with positive and negative examples, and set aside a validation
set.

image

window

Ensemble 3
Face?

Ensemble 2
Face?

Ensemble 1
Face?

non-face non-face non-face

…

possible 
faceN N N

Y Y Y

FIGURE 6.14 Operation of the cascade face detector.
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FIGURE 6.15 An example of the output from the Viola–Jones face detector.

3. Add a new AdaBoost ensemble trained on the current set of positive and
negative examples.

4. Test the current cascade classifier on the validation set.

5. If Ftarget has not been reached, discard the current negative examples and
assemble a new set of negative examples from the false positives obtained at
the previous step. Continue from step 3. Otherwise, return the trained cascade
of ensembles.

Can the detector work without AdaBoost? Probably, but we would like to believe
that AdaBoost shares a large portion of the credit for the remarkable performance of
the Viola and Jones’ face detector.

The detector has been trained on 5000 manually labeled positive examples (face
windows) and 300 million negative examples (nonface windows). The final cascade
consists of 38 ensembles (stages). The first ensemble uses only two features, rejects
about 50% of the windows, and detects nearly 100% of the face windows. The second
ensemble uses 10 features, and again detects nearly 100% of the face windows, while
discarding a further 30% of nonfaces. The total number of features used by the
cascade is 6060. However, on average, 10 features are needed to label a window.

According to the authors, training of the detector took weeks of CPU time but
the operation is remarkably fast. The trained classifier is implemented in many
programing languages, and is also encoded within OpenCV library.3 Finally, an
example of the result from the Viola–Jones face detector is shown in Figure 6.15.4

Six positive windows were returned, all of which are suitably positioned on the image.

3OpenCV (Open Source Computer Vision) is a library of programming functions for real-time computer
vision. http://opencv.org/
4We used a MATLAB interface to OpenCV written by Dirk-Jan Kroon. http://www.mathworks.com/
matlabcentral/fileexchange/29437-viola-jones-object-detection

http://opencv.org/
http://opencv.org/
http://www.mathworks.com/matlabcentral/fileexchange/29437-viola-jones-object-detection
http://www.mathworks.com/matlabcentral/fileexchange/29437-viola-jones-object-detection
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RANDOM SUBSPACE

Training: Given is a labeled data set Z = {z1,… , zN}, where each object is described by
the features in the feature set X = {X1,… , Xn}.

1. Choose the ensemble size L, the base classifier model, and the number of features d
(d < n) to be sampled for each classifier.

2. Take L samples of size d from X, and train classifiers D1,… , DL. The samples are
usually taken without replacement.

Operation: For each new object:

1. Classify the new object x by all classifiers D1,… , DL. For classifier Di, use only the
features that this classifier was trained on.

2. Taking the label assigned by classifier Di to be a “vote” for the respective class, assign
to x the class with the largest number of votes.

Return the ensemble label of the new object.

FIGURE 6.16 Training and operation algorithm for the random subspace ensemble.

6.4 RANDOM SUBSPACE ENSEMBLES

In problems with a large number of features, a natural ensemble-building heuristic is to
use different feature subsets to train the ensemble members. Since formally introduced
and named Random Subspace Ensemble by Ho [182], this method has taken the lead
in many application domains characterized by high-dimensional data. Examples
include, but are not limited to, phenotype recognition [433], cancer diagnosis [19, 36,
37], functional magnetic resonance imaging (fMRI) data analysis [227, 228], face
recognition [70, 410, 442], credit scoring [407], and bankruptcy prediction [288]. The
random subspace heuristic can be used together with any other compatible heuristic
for building the ensemble, for example, taking bootstrap samples together with taking
a feature sample [58, 254, 407].

The random subspace method is detailed in Figure 6.16.
MATLAB code for the random subspace ensemble is given in Appendix 6.A.3.

◻◼ Example 6.7 Random subspace ensemble
For this example we used the “mfeat” data set from the UCI Machine Learning Repos-
itory [22].5 This data set was donated by Bob Duin, Delft University of Technology.
It consists of features of handwritten numerals from 0 to 9 extracted from a collection
of Dutch utility maps. Examples from all classes are shown in Figure 6.17. There are

5http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/


204 ENSEMBLE METHODS

FIGURE 6.17 Examples of the handwritten digits in the mfeat UCI data set.

2000 data points in total, 200 from each class. Six feature sets were extracted and
stored:

� 76 Fourier coefficients of the character shapes;
� 216 profile correlations;
� 64 Karhunen–Loève coefficients;
� 240 pixel averages in 2 × 3 windows;
� 47 Zernike moments; and
� 6 morphological features.

Using all features makes the problem too easy, hence we chose only the 216 profile
correlations as the feature set X. We ran a 10-fold cross-validation for the random
subspace ensemble method, splitting the data in a systematic way. Out of the 200
objects for a given class, the testing folds were formed from objects 1–20, 21–40,
41–60, and so on. The remaining objects were the training data. For comparison, we
ran AdaBoost and bagging for the same splits. In all cases we used decision tree as
the base classifier and an ensemble size of L = 10 classifiers. The average testing
error rates and the standard deviations were as follows:

Random subspace: 4.80% ± 1.38
Bagging: 6.55% ± 1.76

AdaBoost: 5.00% ± 0.94

The random subspace ensemble outperformed the two competitors for these set-
tings. This does not mean that it is universally better for high-dimensional spaces,
and for any ensemble size. The example was meant to demonstrate that there are
cases where the RS ensemble has an edge.

6.5 ROTATION FOREST

The rotation forest ensemble method [226, 331] relies on the instability of the decision
tree classifier with respect to rotation of the space, an illustration of which was shown
in Section 2.2.7. The algorithm is unashamedly heuristic, but is gaining popularity
due to its empirical success, often outperforming Bagging, AdaBoost, random forest,
and random subspace. Recent application areas include (but are not limited to) can-
cer classification [264], diagnosis of coronary artery disease [202] and Parkinson’s
disease [298], segmentation of computed tomography angiography (CTA) images
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[21], genomic and proteomic research [377, 423], remote sensing [169, 203], image
processing [432], and finance [85, 272].

The intuition behind rotation forest is that diversity can be enforced without sac-
rificing data, either objects or features. All other ensemble methods sample from
the data or the feature set, potentially losing accuracy of the individual classifiers,
which is then compensated by the increased diversity. The rotation forest method
does not throw away data; it only presents it to the classifier from a different
angle.

The rotation forest method prepares the training set for each individual classifier in
the following way. Start with a labeled data set Z = {z1,… , zN} described by feature
set X = {X1,… , Xn}. Suppose that Z is organized as a numerical matrix of size N × n.
Choose the ensemble size L and an integer K. First, split randomly the feature set
into K (disjoint) subsets of approximately equal size. For simplicity, suppose that K
is a factor of the number of features n so that each feature subset contains M = n∕K
features.

Denote by Si,j the jth subset of features for the training set of classifier Di. For
every such subset, select randomly a nonempty subset of classes and then draw a
bootstrap sample of objects, of size 75% of the data count. Run principal component
analysis (PCA) using only the M features in Si,j and the selected subset of classes.

Store the coefficients of the principal components, a(1)
i,j , ..., a(M)

i,j . Note that it is possible
that some of the eigenvalues are zero, therefore we may not have all M vectors but
have instead Mj ≤ M vectors. Running PCA on a subset of classes is done in a
bid to avoid identical coefficients if the same feature subset is chosen for different
classifiers.

Next, organize the obtained vectors with coefficients in a sparse rotation matrix Ri

Ri =

⎡⎢⎢⎢⎢⎣
a(1)

i,1 , a(2)
i,1 ,… , a(M1)

i,1 , [0] … [0]

[0] a(1)
i,2 , a(2)

i,2 ,… , a(M2)
i,2 , … [0]

⋮ ⋮ ⋱ ⋮
[0] [0] … a(1)

i,K , a(2)
i,K ,… , a(MK )

i,K

⎤⎥⎥⎥⎥⎦
. (6.10)

(The rotation matrix will have dimensionality n ×
∑

j Mj.) To calculate the training
set for classifier Di we first rearrange the rows of Ri so that they correspond to the
original features. Denote the rearranged rotation matrix Ra

i . Then, the training set for
classifier Di is ZRa

i .
For the operation of the rotation forest, each new object x (vector row) must be

transformed using the rotation matrix for the specific classifier, Di,

y = xRa
i ,

and subsequently classified. After obtaining the decisions of all L classifiers, di,j
(as the decision profile), we calculate the final degree of support using the average
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ROTATION FOREST

Training: Given is a labeled data set Z = {z1,… , zN} described by feature set
X = {X1,… , Xn}.

1. Choose the ensemble size L, the base classifier model (decision tree is recommended)
and K, the number of feature subsets.

2. For i = 1…L

(a) Prepare the rotation matrix Ra
i :

i. Split the feature set X into K subsets:
Si,j (for j = 1…K).

ii. For j = 1…K
� Let Zi,j be the data set for the features in Si,j(an N × |Si,j| matrix).
� Eliminate a random subset of classes from Zi,j, resulting in a data set Z′

i,j.
� Select a bootstrap sample from Z′

i,j, of size 75% of the number of objects in
Z′

i,j. Denote the new set by Z′′
i,j.

� Apply PCA on Z′′
i,j to obtain and store the coefficients in a matrix Ci,j.

iii. Arrange the Ci,j, for j = 1…K in a rotation matrix Ri as in Equation 6.10.
iv. Construct Ra

i by rearranging the the rows of Ri so as to match the order of
features in X.

(b) Build classifier Di using ZRa
i as the training set, with the given class labels.

Operation: For each new object x

1. For i = 1…L, calculate the transformed object y = xRa
i and run it through classifier

Di. Denote by di,j(y) the support assigned by classifier Di to the hypothesis that x
comes from class 𝜔j.

2. Calculate the confidence for each class, 𝜔j, by the average combination method.
3. Assign x to the class with the largest confidence.

Return the ensemble label of the new object.

FIGURE 6.18 Training and operation algorithm for the rotation forest ensemble.

combination method (Chapter 5). The training and operation of the rotation forest
method are shown in Figure 6.18.

MATLAB code for the rotation forest ensemble method is given in Appendix
6.A.4. Continuing the example with the mfeat data set and the 216 profile correlation
features, the ensemble error for the rotation forest ensemble was

Rotation forest: 4.50% ± 1.63.

◻◼ Example 6.8 An example of rotation forest training
Here we present a worked numerical example for calculating the rotation matrix for
a hypothetical classifier Di. The data set Z consists of 10 objects described by n = 9
features, as shown in Table 6.2.
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TABLE 6.2 Data for the Numerical Example with Rotation Forest

Data Labels

1 5 2 −2 −1 1 −4 5 −4 1
−2 3 −1 −1 5 −2 −2 1 4 1

3 0 4 0 0 2 4 1 5 1
−3 0 1 −2 −3 3 −4 −2 3 2

2 0 −1 4 5 −2 5 0 −4 2
−3 −1 5 −3 5 −3 3 2 −2 2
−1 1 4 −2 0 −2 0 2 −1 3

2 1 1 −3 −3 −1 1 −1 2 3
3 4 2 −2 −2 0 −2 −1 −3 3

−4 3 1 0 0 1 0 5 3 3

Let the random permutation that shuffled the features be

1 3 8 2 4 5 6 7 9

Splitting into K = 3 subsets, we get Si,1 = {1, 3, 8}, Si,2 = {2, 4, 5} and Si,3 =
{6, 7, 9}. Suppose that the subset of classes for Si,1 was 𝜔1 and 𝜔3. The data set is
reduced to columns 1, 3, and 8 and rows 1–3 and 6–10. Taking a 75% bootstrap
sample with indices [1, 6, 6, 2, 7], the data submitted to the PCA calculation is as
follows:

1 2 5
3 2 −1
3 2 −1

−2 −1 1
−4 1 5

The three vectors with the principal component coefficients are:

−0.7270 0.5283 0.4385
−0.1470 0.5041 −0.8510

0.6707 0.6832 0.2889

These vectors are inset as the top 3 × 3 entries of the rotation matrix Ri. The second
3 × 3 block striding the leading diagonal corresponds to feature subset Si,2 = {2, 4, 5}.
The data set is reduced again, this time using another random subset of classes, say
𝜔2 and 𝜔3. A 75% bootstrap sample is taken from the reduced set and the principal
components are calculated. In the same way, we calculate the last 3 × 3 block. The
rotation matrix Ri is shown as a heat map in Figure 6.19a. To make this matrix usable
with the original data set, the rows must be rearranged to correspond to the features.
Thus the first row stays the same, the second row is replaced by the current fourth
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(a) Unarranged rotation matrix (b) Arranged rotation matrix

FIGURE 6.19 Illustration of the rotation matrices Ri and Ra
i for classifier Di.

row, and so on. The arranged matrix, Ra
i is shown in Figure 6.19b. The training data

for classifier Di is ZRa
i .

An experimental study [226] reported that

1. The splitting of the feature set X into subsets is essential for the success of
rotation forest. This was demonstrated by comparing sparse with non-sparse
random projections; the results were favourable to sparse random projections.

2. No pattern of dependency was found between K (M) and the ensemble accuracy.
As M = 3 worked well in previous experiments, this value was recommended
as the default parameter of the algorithm.

3. In the experiments with 35 benchmark data sets, rotation forest was found to
be better than bagging, AdaBoost, and random forest for all ensemble sizes,
more noticeably so for smaller ensembles sizes.

4. Interestingly, PCA was found to be the best method for rotating the feature
space. It was compared with nonparametric discriminant analysis (NDA), which
takes into account the class labels, and also with sparse and nonsparse random
projections. This issue was recently revisited, and supervised projections were
advocated instead [148].

6.6 RANDOM LINEAR ORACLE

The Random Linear oracle (RLO) [239] is an ensemble method which combines the
classifier fusion and classifier selection approaches. Each classifier in the ensemble is
replaced by a mini-ensemble consisting of two classifiers. A linear function (oracle)
decides which of the two classifiers gets to label the object. This approach encourages
extra diversity in the ensemble while allowing for high accuracy of the individual
ensemble members. The RLO algorithm is shown in Figure 6.20.

The RLO is a “wrapping” approach, which means that it can be used with nearly
any ensemble method, as well as on its own. It was found that the RLO framework
improves upon the standard versions of bagging, AdaBoost, Multiboost, random
forest, random subspace, and rotation forest [239].
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RANDOM LINEAR ORACLE

Training: Given is a labeled data set Z = {z1,… , zN}.

1. Choose the ensemble size L and the base classifier model.
2. For i = 1,… , L

(a) Generate a random hyperplane (the ith oracle) through the feature space so that
there is at least one object on each side of the hyperplane. Store the coefficients of
the plane equation.

(b) Split the data into (+) and (−) subsets, depending on which side of the hyperplane
the data points lie. Train classifiers Di(+) and Di(−), respectively.

3. Return the 2L trained classifiers and the L oracles.

Operation: For each new object x

1. For i = 1,… , L, apply ith oracle to x and subsequently classify x with Di(+) or Di(−).
Take the output to be the vote of the ith ensemble member (label or continuous
valued).

2. Assign to x the class with the largest number of votes (or largest aggregated degree of
support).

Return the ensemble label of the new object.

FIGURE 6.20 Training and operation algorithm for the random linear oracle ensemble.

If the classifier for the two parts of the RLO is a decision tree, each member of
the RLO ensemble can be viewed as the so-called “omnivariate tree” [258, 426]. In
omnivariate decision trees, the split at each node is done through a function which
is selected or tuned during the induction of the tree. The base classifiers in the RLO
ensemble are, in essence, omnivariate trees with a random linear node at the root
and standard univariate subtrees to the left and to the right. The similarity between
the RLO base classifier and the omnivariate tree is only structural because the RLO
function at the root node is not trained but is chosen at random. The randomness of
this choice is the most important heuristic of the RLO ensemble.

◻◼ Example 6.9 Random linear oracle for the fish data
We generated the fish data set with 35% label noise as the training data, and used again
the whole grid with the noise-free labels for testing. Naı̈ve Bayes was chosen as the
base classifier. Figure 6.21a shows the training data and the classification regions of
the single Naı̈ve Bayes classifier. Figure 6.21b shows the regions for a mini-ensemble
classifier consisting of two NB classifiers. The oracle was constructed in the following
way. Pick two random points in the data set, and find the equation of the hyperplane
(line in this case) orthogonal to the segment and passing through the middle of it. Let
the points be A and B with position vectors a and b, respectively. The equation of
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(a) Naïve Bayes

error 29.68%

(b) Mini-ensemble

error 15.80%

(c) RLO (BKS)

error 11.00%

FIGURE 6.21 Classification regions for the NB classifier, the mini-ensemble of two NB
classifier, and the RLO ensemble combined by BKS (L = 15). The error rate is calculated with
respect to the data with noise-free labels.

the oracle hyperplane is wTx + w0 = 0, where w = a − b, and w0 = (bT b − aT a)∕2.
The two points and the oracle line are plotted in Figure 6.21b.

Figure 6.21c shows the data with the noise-free labels and the classification regions
of an RLO ensemble. The ensemble size was L = 15, and the combination rule was
the BKS (we used the code from Chapter 5). The error rates of the classifiers with
respect to the noise-free data labels are also shown.

Figure 6.22 shows the classification regions for RLO with majority vote and with
BKS for several values of L. For this configuration of the classes, majority vote
combiner happened to be consistently worse than the BKS combiner except for the
smallest ensemble size of L = 5. BKS shows its over-fitting tendency for larger L,
which is demonstrated by the increasing level of noise incorporated into the boundary
(top row).

BKS

16.6% (5) 12.16% (15) 18.24% (45) 23.6% (95)

14.04% (5) 17.8% (15) 20.36% (45) 20.68% (95)

MAJ

FIGURE 6.22 Classification regions for the RLO and the NB classifier. Two combina-
tion methods were tried: BKS (top row) and majority vote (bottom row), for different
ensemble sizes as shown in the brackets. The ensemble error rate is shown in the plot
titles.



ERROR CORRECTING OUTPUT CODES (ECOC) 211

BKS

21.68% (5) 11.04% (15) 19.68% (45) 20.52% (95)

17.72% (5) 23.56% (15) 25.2% (45) 23.72% (95)

MAJ

FIGURE 6.23 Classification regions for the RLO and the LDC. Two combination methods
were tried: BKS (top row) and majority vote (bottom row), for different ensemble sizes as
shown in the brackets.

The results are not much different if we use the linear discriminant classifier as the
base classifier for the RLO ensembles. The results for several values of L are shown
in Figure 6.23.

The example shows that the random oracle can be a useful diversifying heuristic,
which can convert a stable classifier, such as the parametric Naı̈ve Bayes or LDC,
into a nonstable base classifier. The RLO mini-ensemble nearly halves the error of
the NB classifier. This supports the idea of classifier selection, where the regions of
competence can be random. A simple classifier trained separately in each region may
lead to an excellent ensemble.

Observe that the ensemble error depends on the ensemble size L, the type of
combiner, and the type of base classifier. This suggest that it is important to train
all the components of the ensemble together rather than try to perfect an isolated
heuristic in a global context. That heuristic may have its niche in relation to other
ensemble parameters.

6.7 ERROR CORRECTING OUTPUT CODES (ECOC)

The ECOC ensemble strategy was developed for problems with multiple classes [4,
14, 97, 98, 217, 275, 276, 358]. The idea is to avoid solving the multi-class prob-
lem directly and to break it into dichotomies instead. Each classifier in the ensem-
ble discriminates between two possibly compound classes. For example, let Ω =
{𝜔1,… ,𝜔10}. We can break Ω into Ω = {Ω(1),Ω(2)}, where Ω(1) = {𝜔1,… ,𝜔5}
and Ω(2) = {𝜔6,… ,𝜔10}. The ECOC strategy is the natural multi-class extension
for classification methods specifically designed for two-class problems. Examples of
such methods are SVM and AdaBoost [10, 209, 304, 416].

There are two main issues in ECOC ensembles: how to design the two-class sets
(the dichotomies) to be solved by the ensemble members, and how to decode the
output. Many solutions have been proposed for both problems [10, 122, 416].
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6.7.1 Code Designs

6.7.1.1 The Code Matrix We can represent each split of the set of c classes as a
binary vector of length c with 1s for the classes in Ω(1) and 0s for the classes in Ω(2).
The corresponding vector for the above example is

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]T
.

The set of all such vectors has 2c elements. However, not all of them correspond to
different splits. Consider [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]T . Even if the Hamming distance
between the two binary vectors is equal to maximum possible value 10, the two
subsets are again Ω(1) and Ω(2), only with swapped labels. Since there are two copies
of each split within the total of 2c splits, the number of different splits is 2(c−1). The
splits {Ω, ∅} and the corresponding {∅,Ω} are of no use because they do not represent
any discrimination task. Therefore the number of possible different splits of a set of
c class labels into two nonempty disjoint subsets (dichotomies) is

2(c−1) − 1. (6.11)

We can choose L dichotomies to be the classifier assignments. These can be
represented as a binary code matrix C of size c × L. The (i, j)th entry of C, denoted
C(i, j) is 1 if class 𝜔i is in Ω(1)

j (the compound class with label “1” for classifier Dj)

or 0, if class 𝜔i is in Ω(2)
j . Thus each row of the code matrix, called a codeword,

corresponds to a class and each column corresponds to a classifier.
The two main categories of the ECOC design methods are problem indepen-

dent and problem specific. Recently, the problem-specific methods have flourished,
including methods based on class separability [316, 317], sub-class structures [123],
and feature selection [23]. Below we explain the more generic approach; that of
generating problem-independent ECOC.

To make the most of an ECOC ensemble, the code matrix should be built according
to two main criteria.

Row separation. In order to avoid misclassifications, the codewords should be as
far apart from one another as possible. We can still recover the correct label for x
even if several classifiers have guessed wrongly. A measure of the quality of an error
correcting code is the minimum Hamming distance between any pair of codewords.
If this distance is denoted by Hc, the number of errors that the code is guaranteed to
be able to correct is ⌊

Hc − 1

2

⌋
. (6.12)

Column separation. It is important that the dichotomies given as the assignments
to the ensemble members are as different from each other as possible too. This
will encourage low correlation between the classification errors and will increase
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the ensemble accuracy [98]. The distance between the columns must be maximized
keeping in mind that the complement of a column gives the same split of the set of
classes. Therefore, the column separation should be sought by maximizing

HL = min
i,j,i≠j

min

{
c∑

k=1

|C(k, i) − C(k, j)| ,
c∑

k=1

|1 − C(k, i) − C(k, j)|} ,

i, j ∈ {1, 2,… , L}. (6.13)

6.7.1.2 ECOC Generation Methods Below we explain five simple ECOC gener-
ation methods which have been used as benchmark in the literature [10].

1. One per class (also called “one versus all” or “one against all”) [329]. The
target function for class 𝜔j is a codeword containing 1 at position j and 0s
elsewhere. Thus, the code matrix is the identity matrix of size c, and we only
build L = c classifiers. This encoding is of low quality because the Hamming
distance between any two rows is 2, and so the error correcting power is⌊ 2−1

2
⌋ = 0.

2. All pairs (also called “one versus one”) [80, 200, 275]. The code matrix for
this class is called “ternary” because there must be a third element in the code
indicating that the respective class is not included in either the positive or the
negative group. The conventional notation is 1 for the positive class, −1 for the
negative class, and 0 for excluded classes. Then the code matrix for the all-pairs
code for a c-class problem will require c(c − 1)∕2 columns, which will also be
the ensemble size L. For problems with a large number of classes, for example
in face recognition (say, 100 employees of a company), this coding scheme is
impractical.

3. Exhaustive code (also called “complete code”). Dietterich and Bakiri [98] give
the following procedure for generating all possible 2(c−1) − 1 different classifier
assignments for c classes.

(a) Row 1 is all ones.

(b) Row 2 consists of 2(c−2) zeros followed by 2(c−2) − 1 ones.

(c) Row 3 consists of 2(c−3) zeros, followed by 2(c−3) ones, followed by 2(c−3)

zeros, followed by 2(c−3) − 1 ones.

(d) In row i, there are alternating 2(c−i) zeros and ones.

(e) The last row is 0,1,0,1,0,1,...,0.

The exhaustive code for c = 4 obtained through this procedure is as follows:

D1 D2 D3 D4 D5 D6 D7
𝜔1 1 1 1 1 1 1 1
𝜔2 0 0 0 0 1 1 1
𝜔3 0 0 1 1 0 0 1
𝜔4 0 1 0 1 0 1 0
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The same class splits can be obtained by taking the integers from 1 to 2(c−1)

and converting them to binary numbers with c binary digits. MATLAB code
for the exhaustive code is given in Appendix 6.A.6.

Dietterich and Bakiri [98] suggest that exhaustive codes should be used
for 3 ≤ c ≤ 7. For 8 ≤ c ≤ 11, an optimization procedure can be used to select
columns from the exhaustive code matrix. For values of c larger than 11, random
code generation is recommended.

4. Random generation—dense code. Authors of studies on ECOC ensembles
share the opinion that random generation of the codewords is a reasonably
good method [98, 358]. Although these studies admit that more sophisticated
procedures might lead to better codes, they also state that the improvement
in the code might have only marginal effect on the ensemble accuracy. The
example below illustrates the random ECOC generation. In the dense code, all
classes are present in each dichotomy. In the ternary notation, the code matrix
contains only 1s and −1s. Each bit of the matrix takes one of these values with
probability 0.5. The recommended ensemble size (codeword length) in this
case is ⌈10 log2(c)⌉ [10], where c is the number of classes.

5. Random generation—sparse code. In this case, the randomly sampled entries
in the code matrix are −1, 0, and 1. Zero is sampled with probability 0.5, and
any of the other two values, with probability 0.25. The recommended ensemble
size (codeword length) in this case is ⌈15 log2(c)⌉ [10].

To create a random code, a predefined large number of code matrices are
sampled and evaluated with respect to a given criterion. The best code matrix
is returned. The criterion could be the maximum row and column separation

max
C

{Hc + HL}, (6.14)

where C denotes the code matrix.

Evolutionary algorithms, and specifically genetic algorithms, have been favoured
for designing ECOC matrices because they can handle large binary spaces, and can
optimize any fitness function [23, 30, 224].

6.7.2 Decoding

Suppose that the classifiers in the ensemble produce binary labels (s1,… , sL) for a
given input x. The Hamming distance between the classifier outputs and the code-
words for the classes is calculated, and the class with the shortest Hamming distance
is chosen as the label of x. The support for class 𝜔j can be expressed as

𝜇j(x) = −
L∑

i=1

|si − C(j, i)|. (6.15)
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6.7.2.1 ECOC, Voting and Decision Templates Suppose that the combiner of an
ECOC ensemble is the minimum Hamming distance. This can be viewed as majority
voting as follows. Suppose that classifier Di solves the dichotomy {Ω(1)

i ,Ω(2)
i }. Let

the decision of Di be si = 1, that is, compound class Ω(1)
i is chosen. Each individual

class within Ω(1)
i will obtain one vote from Di. Since each dichotomy contains all

the classes, each class will obtain a vote from each classifier. Selecting the class
with the largest sum of these votes is equivalent to making a decision in favor of the
class whose codeword has the lowest Hamming distance to the binary word of the L
outputs s1,… , sL. If the classifiers are made to learn very different boundaries, then
there is a good chance that their errors will be unrelated.

◻◼ Example 6.10 ECOC, majority voting, and decision templates
Table 6.3 shows the code matrix for c = 8 classes and codeword length L = 15 found
with the random generation method (Hc = 5, HL = 1).

TABLE 6.3 Code matrix for c = 8 classes and L = 15 dichotomizers

𝜔1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0
𝜔2 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0
𝜔3 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0
𝜔4 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0
𝜔5 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1
𝜔6 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0
𝜔7 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1
𝜔8 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0

Suppose that the ensemble  = {D1,… , D15} produces the following set of out-
comes for some input x :

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. (6.16)

The Hamming distances to the eight codewords are as follows: 8, 6, 9, 8, 6, 11, 9, 8.
There is a tie between 𝜔2 and 𝜔5, so any of the two labels can be assigned.

By giving label s1 = 1, classifier D1 votes for classes 𝜔1,𝜔2,𝜔3,𝜔5,𝜔7, and 𝜔8.
Thus, the number of votes that class 𝜔1 will get is exactly the Hamming distance
between the class codeword and the classifiers’ output.

The Hamming distance between binary vectors is equal to the Euclidean distance
between them. If we regard the codewords as the templates for the classes, then by
labeling x according to the minimal Hamming distance, we implement the decision
template combiner.

6.7.2.2 Soft ECOC Labels Kong and Dietterich [217] use soft labels di,j(x) =
P̂(Ω(j)

i |x) instead of the 0/1 labels from the L classifiers in the ensemble. Since there
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are only two compound classes, we have di,2(x) = 1 − di,1(x). The Hamming distance
between the classifier outputs and the codeword for class 𝜔j is

𝜇j(x) =
L∑

i=1

|di,1(x) − C(j, i)|. (6.17)

A thriving research area of ECOC ensemble are the decoding strategies [14,
122, 417]. Examples of such strategies are loss-based decoding [10], probabilistic
decoding [188, 304], reject rules [366], and classifier-based decoding, treating the
ECOC outputs as features [438]. Escalera et al. [121] offer a MATLAB library for
ECOC ensembles containing a variety of coding and decoding functions.

6.7.3 Ensembles of Nested Dichotomies

An alternative approach to solving multi-class problems is the ensemble of nested
dichotomies (ENDs) [130, 332]. Although ENDs are not exactly examples of ECOC
ensembles, they exploit a similar idea. Each classifier in the ensemble solves a cascade
of binary classification sub-problems. Such a classifier has a tree-wise structure and
can be built in a top–down or a bottom–up approach. In the top–down approach [221,
317], the set of classes reaching a node is progressively split into two parts based on
a criterion related to the separability between the two meta-classes. Pujol et al. [317]
use mutual information as the separability criterion, and Kumar et al. [221] use a
probability estimate.

◻◼ Example 6.11 Building a class-hierarchy tree
To illustrate the idea of a nested dichotomy, we used the mfeat UCI data set, an
example of which is shown in Figure 6.17. Without loss of generality, only the “pix”
subset of features was used. To generate the tree in a top–down manner, we checked
all possible splits into two nonempty sets at each node. For example, at the root, there
are 10 classes, therefore there are 2(10−1) − 1 = 511 possible splits. For each split,
we calculated the resubstitution error rate of the linear classifier (function classify
from Statistics Toolbox of MATLAB). The split with the smallest error happened to
be classes (27) versus classes (01345689). Continuing in the same way, the whole
tree was built (Figure 6.24).

Pujol et al. [317] translate the tree into a ternary ECOC matrix, arguing that the class
assignments are more meaningful and economical than those in the random codes.
Each split of the tree defines one classifier. The 10 × 8 ECOC code matrix for the
tree in Figure 6.24 is shown in Figure 6.25.

The columns of the matrix are the assignments for the classifiers. For example, the
first column defines the task for the classifier at the root of the tree. It splits the class
set into positive (01346789) and negative (27) subsets. The second column ignores
all classes but 2 (positive) and 7 (negative), and so on.
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0123456789

27 01345689

2 7

1 4

14035689
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9 3568

8356

6
35

3 5

FIGURE 6.24 The nested dichotomy tree for the handwritten digits data set mfeat (UCI).
The numbers at the nodes and the leaves of the tree are the class labels (digits) from 0 to 9.

Instead of using one tree to generate the ECOC matrix, the ENDs use a random
tree structure as the ensemble diversifying heuristic [130]. The number of different
nested dichotomies for a set of c classes can be calculated through the following
recursive equation [130]:

T(c) = (2c − 3) × T(c − 1), (6.18)

where T(1) = 1. A random subset of the possible nested dichotomies makes an ensem-
ble. An extensive experimental study by Rodrı́guez et al. [332] found that the nested
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FIGURE 6.25 Numerical and color-based representation of the ternary code matrix for the
nested dichotomy in Figure 6.24.
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dichotomies, while not spectacularly accurate on their own, make a valuable ensemble
accessory, which improves upon the accuracies of the classical configurations.

APPENDIX

6.A.1 BAGGING

Function bagging_train trains an ensemble, and bagging_classify calculates
the ensemble output and error. A base classifier model needs to be specified as two
function handles, one for the training and one for the classification. For this example,
the base classifier was Naı̈ve Bayes (code given in Chapter 2). The example shows
how a bagging ensemble fares on the Fisher’s iris data (introduced in Chapter 1),
when the training data is a noise-distorted version of the original.

Figure 6.A.1 plots classes “versicolor” and “virginica” as the original data (Figure
6.A.1a) and the noise-contaminated data (Figure 6.A.1b). The noise amplitude and
the ensemble size are parameters that can be re-set or varied in a loop, should we
want to examine the behavior of bagging.

(a) Original data
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(b) Data with Gaussian noise

FIGURE 6.A.1 An example of the iris data used in the example.

1 %---------------------------------------------------------%
2 load fisheriris % load the iris data
3

4 % create numerical labels
5 labels = [ones(50,1);2*ones(50,1);3*ones(50,1)];
6

7 % standardize the data for easier manipulation
8 data = zscore(meas); % mean 0, std 1
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9 % inject noise to make a new training data
10 na = 0.8; % noise amplitude
11 data_noise = data + randn(size(data)) * na;
12

13 L = 5; % ensemble size
14 E = bagging_train(data_noise,labels,L,@naive_bayes_train);
15 [˜,e] = bagging_classify(E,@naive_bayes_classify,data,labels);
16 fprintf('Iris data\nNoise level = %.2f\n',na)
17 fprintf('Ensemble size = %i\nEnsemble error = %.4f\n',L,e)
18 %---------------------------------------------------------%

1 %---------------------------------------------------------%
2 function E = bagging_train(data, labels, L, train_D)
3 % --- train a bagging ensemble
4 %
5 % Input: ----------------------------------------
6 % data: N-by-n array with data
7 % labels: N-by-1 numerical labels: 1, 2, 3, ...
8 % L: ensemble size
9 % train_D: classifier model (a function handle)

10 %
11 % Output: --------------------------------------
12 % E: a cell array containing the L classifiers
13

14 N = size(data,1); % number of objects
15 E = cell(1,L); % pre-allocate the ensemble array for speed
16 for i = 1:L
17 bi = randi(N,N,1); % bootstrap index
18 bd = data(bi,:); % bootstrap data
19 bl = labels(bi); % bootstrap labels
20 E{i} = train_D(bd,bl); % train the i-th classifier
21 end
22 %---------------------------------------------------------%

1 %---------------------------------------------------------%
2 function [al,e] = bagging_classify(E, class_D, data, labels)
3 % --- classify with a trained bagging ensemble
4 %
5 % Input: ----------------------------------------
6 % E: ensemble trained with bagging_train
7 % class_D: a function handle for classification
8 % with a trained classifier D
9 % data: N-by-n array with data to classify

10 % labels: N-by-1 numerical labels (optional)
11 %
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12 % Output: --------------------------------------
13 % al: N-by-1 labels assigned by the ensemble
14 % e: the ensemble classification error, if labels
15 % are provided
16

17 L = numel(E); % ensemble size
18

19 % pre-allocate the ensemble output array for speed
20 ens = zeros(size(data,1),L);
21

22 for i = 1:L
23 ens(:,i) = class_D(E{i},data);
24 % take the labels from the the i-th classifier
25 end
26 al = mode(ens')'; % plurality vote labels
27

28 e = Inf; % pre-set ensemble error
29 if nargin > 3
30 e = mean(al ˜ = labels); % the ensemble error
31 end
32 %---------------------------------------------------------%

Example 6.3 in the text uses the above functions. To call the base classifier,
a handle to the classregtree function from the Statistics toolbox of MAT-
LAB was created. The pruning was turned off in order to destabilize the base
classifiers. For the random forest ensemble, the line calling the bagging training
function was

1 bagging_train(tr,trl,l,...
2 @(x,y) classregtree(x,y,'nvartosample',5,'prune','off'));

For the bagging ensemble,

1 bagging_train(tr,trl,l,...
2 @(x,y) classregtree(x,y,'prune','off'));

For the classification part, we used

1 bagging_classify(ER,@eval,ts,tsl);

6.A.2 ADABOOST

Function adaboost_train trains an ensemble, and adaboost_classify calcu-
lates the ensemble output and error. A base classifier model needs to be specified
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as two function handles, one for the training and one for the classification. For this
example, the base classifier was Naı̈ve Bayes.

1 %---------------------------------------------------------%
2 function [E,be] = adaboost_train(data, labels, L, train_D,

class_D)
3 % --- train an adaboost ensemble
4 %
5 % Input: ----------------------------------------
6 % data: N-by-n array with data
7 % labels: N-by-1 numerical labels: 1, 2, 3, ...
8 % L: ensemble size
9 % train_D: classifier model (a function handle)

10 % class_D: a function handle for classification
11 % with a trained classifier D
12 % Output: --------------------------------------
13 % E: a cell array containing the L classifiers
14

15 N = size(data,1); % number of objects
16 w = ones(1,N)/N; % initialize the weights
17 E = cell(1,L); % pre-allocate the ensemble array for speed
18 i = 1; % ensemble size
19 be = zeros(1,L);
20 while i <= L
21 ai = p_sample(w); % indices of the objects in the sample
22 ad = data(ai,:); % data
23 al = labels(ai); % labels
24 E{i} = train_D(ad,al); % train the i-th classifier
25 lo = (class_D(E{i},data) ˜ = labels); % loss
26 ep = w * lo; % weighted loss
27 if ep < 0.5 && ep ˜ = 0
28 be(i) = ep / (1 - ep); % classifier's weight
29 w = w .* be(i).ˆ(1 - lo'); % objects' weights
30 w = w / sum(w); % normalize
31 i = i + 1; % add the classifier to the ensemble
32 else
33 w = ones(1,N)/N; % re-initialize the weights
34 end
35 end
36 end
37

38 function ind = p_sample(w)
39 % sample from distribution w
40 N = length(w);
41 cdf = cumsum(w);
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42 r = rand(N,1); % uniform random numbers
43 d1 = repmat(r(:),1,N);
44 d2 = repmat(cdf(:)',N,1);
45 [˜, ind] = max((d1 < d2)');
46 end
47 %---------------------------------------------------------%

1 %---------------------------------------------------------%
2 function [al,e] = adaboost_classify(E, be, class_D, data,

labels)
3 % --- classify with a trained adaboost ensemble
4 %
5 % Input: ----------------------------------------
6 % E: ensemble trained with adaboost_train
7 % be: ensemble weights
8 % class_D: a function handle for classification
9 % with a trained classifier D

10 % data: N-by-n array with data to classify
11 % labels: N-by-1 numerical labels (optional)
12 %
13 % Output: --------------------------------------
14 % al: N-by-1 labels assigned by the ensemble
15 % e: the ensemble classification error, if labels
16 % are provided
17

18 L = numel(E); % ensemble size
19 W = log(1./be); % classifiers' weights
20

21 % pre-allocate the ensemble output array for speed
22 ens = zeros(size(data,1),L);
23

24 for i = 1:L
25 ens(:,i) = class_D(E{i},data);
26 % take the labels from the the i-th classifier
27 end
28

29 class_scores = [];
30 for i = 1:max(ens(:)) % for all classes
31 class_scores = [class_scores; W * (ens == i)'];
32 end
33

34 [˜ ,al] = max(class_scores); % weighted vote labels
35 al = al';
36

37 e = Inf; % pre-set ensemble error
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38 if nargin > 4
39 e = mean(al ˜ = labels); % the ensemble error
40 end
41 %---------------------------------------------------------%

The script that illustrates the operation of these two functions can be adapted from
the script for the bagging ensemble above. Lines 14 and 15 should be replaced by

1 %---------------------------------------------------------%
2 [E,be] = adaboost_train(data_noise,labels,L,...
3 @naive_bayes_train,@naive_bayes_classify);
4 [˜ ,e] = adaboost_classify(E,be,@naive_bayes_classify,data,

labels);
5 %---------------------------------------------------------%

6.A.3 RANDOM SUBSPACE

Function rs_train trains an ensemble, and rs_classify calculates the ensemble
output and error. A base classifier model needs to be specified as two function handles,
one for the training and one for the classification. For this example, the base classifier
is the classification tree encoded in the Statistics Toolbox of MATLAB, function
classregtree.

The script uploads the file mfeat-fac with the 216 profile correlations. It then creates
the class labels and the indices of the cross-validation folds. The loop performs the 10-
fold cross-validation of the random subspace ensemble. The average error rate and the
standard deviation thereof are printed at the end. The code in this section is standalone
and requires internet access to the data and the Statistics Toolbox of MATLAB.

1 %---------------------------------------------------------%
2 clear all, close all; clc
3

4 p1 = 'http://archive.ics.uci.edu/ml/machine-learning-
databases';

5 p2 = '/mfeat/mfeat-fac'; % data set name
6 data = str2num(urlread([p1,p2])); % load up the data
7 labels = repmat(1:10,200,1); labels = labels(:);
8 L = 10; % ensemble size
9

10 % Form the 10-fold cross-validation indices
11 I = 1:2000; II = reshape(I,200,10); III = reshape(II',200,10);
12

13 for i = 1:10
14 tsI = III(:,i); % testing data indiced
15 trI = setxor(tsI,I); % training data indices
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16 [E,F] = rs_train(data(trI,:),labels(trI),L,...
17 floor(size(data,2)/3),...
18 @(x,y) classregtree(x,y,'prune','off'));
19 [˜, e(i)] = rs_classify(E,F,@eval,data(tsI,:),labels(tsI));
20 fprintf('RS error = %.4f\n',e(i))
21 end
22

23 % Print the average RS ensemble error and the standard devia-
tion

24 fprintf('\nAverage RS testing error %.4f +- %.4f\n\n',...
25 mean(e),std(e))
26 %---------------------------------------------------------%

1 %---------------------------------------------------------%
2 function [E,F] = rs_train(data, labels, L, d, train_D)
3 % --- train a random subspace ensemble
4 %
5 % Input: ----------------------------------------
6 % data: N-by-n array with data
7 % labels: N-by-1 numerical labels: 1, 2, 3, ...
8 % L: ensemble size
9 % d: number of features to select

10 % train_D: classifier model (a function handle)
11 %
12 % Output: --------------------------------------
13 % E: a cell array containing the L classifiers
14

15 n = size(data,2); % number of features
16 E = cell(1,L); % pre-allocate the ensemble array for speed
17 F = cell(1,L); % pre-allocate the selected features array
18 for i = 1:L
19 rp = randperm(n); % sample without replacement
20 F{i} = rp(1:d); % sampled features
21 % train the i-th classifier
22 E{i} = train_D(data(:,F{i}),labels);
23 end
24

25 %---------------------------------------------------------%

1 %---------------------------------------------------------%
2 function [al,e] = rs_classify(E, F, class_D, data, labels)
3 % --- classify with a trained random subspace ensemble
4 %
5 % Input: ----------------------------------------
6 % E: ensemble trained with rs_train
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7 % F: cell array with the selected features
8 % class_D: a function handle for classification
9 % with a trained classifier D

10 % data: N-by-n array with data to classify
11 % labels: N-by-1 numerical labels (optional)
12 %
13 % Output: --------------------------------------
14 % al: N-by-1 labels assigned by the ensemble
15 % e: the ensemble classification error, if labels
16 % are provided
17

18 L = numel(E); % ensemble size
19

20 % pre-allocate the ensemble output array for speed
21 ens = zeros(size(data,1),L);
22

23 for i = 1:L
24 ens(:,i) = class_D(E{i},data(:,F{i}));
25 % take the labels from the the i-th classifier
26 end
27 al = mode(ens')'; % plurality vote labels
28

29 e = Inf; % pre-set ensemble error
30 if nargin > 4
31 e = mean(al ˜ = labels); % the ensemble error
32 end
33

34 %---------------------------------------------------------%

6.A.4 ROTATION FOREST

The training and classification functions are respectively rotation_forest_train and
rotation_forest_classify. A base classifier model needs to be specified as two function
handles, one for the training and one for the classification. The recommended base
classifier is the decision tree, for example, the classification tree encoded in the
Statistics Toolbox of MATLAB (function classregtree).

There are two issues with this code. First, the original rotation forest algorithm
uses the average combiner for obtaining the ensemble decision. Here we used the
plurality vote, which does not seem to adversely affect the method.

Second, the implementation of the PCA in MATLAB centers the data before
applying the PCA by subtracting the mean from each feature. This will rotate and
center the space. The code below does not take the centering into account when
training the classifier and then for classifying x. This does not do any harm because
the centering only shifts the data in the PCA space in addition to the rotation. Decision

rotation_forest_train
rotation_forest_train
rotation_forest_classify
rotation_forest_classify
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trees are invariant with respect to shift of the features, therefore the training will result
in the same tree, with or without shift. But even if the shift mattered, since the classifier
is trained and is operating on data coming from the same distribution, the rotation
forest ensemble is not likely to suffer any loss of accuracy or diversity.

1 %---------------------------------------------------------%
2 function [E,R] = rotation_forest_train(data, labels, L, K,...

train_D)
3 % --- train an adaboost ensemble
4 %
5 % Input: ----------------------------------------
6 % data: N-by-n array with data
7 % labels: N-by-1 numerical labels: 1, 2, 3, ...
8 % L: ensemble size
9 % K: number of feature subsets

10 % train_D: a function handle for training a
11 % base classifier D
12 % Output: --------------------------------------
13 % E: a cell array containing the L classifiers
14 % R: a cell array with L rotation matrices
15

16 n = size(data,2); % number of features
17 c = max(labels); % number of classes
18 E = cell(1,L); % pre-allocate the ensemble array for speed
19 R = cell(1,L); % pre-allocate the matrices array for speed
20

21 for i = 1:L
22 rp = randperm(n); % shuffle the features
23 si = linspace(1,n+1,K+1); % split indices
24 ro = zeros(n); % rotation matrix for classifier i
25 for j = 1:K
26 % eliminate a random subset of classes
27 ctr = zeros(1,c); % classes to remain
28 while sum(ctr) == 0, ctr = rand(1,c) > 0.5; end
29 itr = ismember(labels,find(ctr)); % index to remain
30 d = data(itr,rp(si(j):si(j+1)-1)); % new data
31

32 % take 75% bootstrap sample
33 Nd = size(d,1); % number of objects in the new data
34 bi = randi(Nd,round(0.75*Nd),1); % bootstrap 75% index
35

36 % apply PCA and inset the columns in ro
37 co = princomp(d(bi,:));
38 ro(si(j):si(j+1)-1,si(j):si(j+1)-1) = co;
39 end
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40 [˜,rrp] = sort(rp); % reverse the shuffle index
41 R{i} = ro(rrp,:); % store the rearranged rotation matrix
42 E{i} = train_D(data * R{i}, labels); % store classifier
43 end
44 %---------------------------------------------------------%

1 %---------------------------------------------------------%
2 function [al,e] = rotation_forest_classify(E, R, class_D,

data, ... labels)
3 % --- classify with a trained rotation forest ensemble
4 %
5 % Input: ----------------------------------------
6 % E: ensemble trained with rotation_forest_train
7 % R: cell array with the rotaion matrices
8 % class_D: a function handle for classification
9 % with a trained classifier D

10 % data: N-by-n array with data to classify
11 % labels: N-by-1 numerical labels (optional)
12 %
13 % Output: --------------------------------------
14 % al: N-by-1 labels assigned by the ensemble
15 % e: the ensemble classification error, if labels
16 % are provided
17

18 L = numel(E); % ensemble size
19

20 % pre-allocate the ensemble output array for speed
21 ens = zeros(size(data,1),L);
22

23 for i = 1:L
24 ens(:,i) = class_D(E{i},data * R{i});
25 % take the labels from the the i-th classifier
26 end
27 al = mode(ens')'; % plurality vote labels *
28 % * Note: The original Rotation Forest algorithm
29 % assumes that the classifier outputs are
30 % continuous-valued and applies the average combiner
31

32 e = Inf; % pre-set ensemble error
33 if nargin > 4
34 e = mean(al ˜ = labels); % the ensemble error
35 end
36 %---------------------------------------------------------%
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6.A.5 RANDOM LINEAR ORACLE

Function rlo_train trains an ensemble, and rlo_classify calculates the ensem-
ble output and error. A base classifier model needs to be specified as two function
handles, one for the training and one for the classification.

1 %---------------------------------------------------------%
2 function [E,H] = rlo_train(data, labels, L, train_D)
3 % --- train a random linear oracle ensemble
4 %
5 % Input: ----------------------------------------
6 % data: N-by-n array with data
7 % labels: N-by-1 numerical labels: 1, 2, 3, ...
8 % L: ensemble size
9 % train_D: classifier model (a function handle)

10 %
11 % Output: ------------------------------------–
12 % E: a cell array containing the L classifiers
13

14 N = size(data,1); % number of objects
15 E = cell(L,2); % pre-allocate the ensemble array for speed
16 H = cell(L,1); % hyperplane array
17 for i = 1:L
18 rp = randperm(N); % choose 2 points
19 A = data(rp(1),:); B = data(rp(2),:);
20 H{i} = [A-B, (B*B' - A*A')/2]; % hyperplane/line
21 left = [data ones(N,1)] * H{i}' > 0; % split the data
22 E{i,1} = train_D(data(left,:),labels(left));
23 E{i,2} = train_D(data(˜ left,:),labels(˜ left));
24 end
25 %---------------------------------------------------------%

1 %---------------------------------------------------------%
2 function [al,e] = rlo_classify(E, H, class_D, data, labels)
3 % --- classify with a trained rlo ensemble
4 %
5 % Input: ----------------------------------------
6 % E: ensemble trained with rlo_train
7 % H: hyperplane array
8 % class_D: a function handle for classification
9 % with a trained classifier D

10 % data: N-by-n array with data to classify
11 % labels: N-by-1 numerical labels (optional)
12 %
13 % Output: --------------------------------------



ECOC 229

14 % al: N-by-1 labels assigned by the ensemble
15 % e: the ensemble classification error, if labels
16 % are provided
17

18 L = size(E,1); % ensemble size
19

20 % pre-allocate the ensemble output array for speed
21 ens = zeros(size(data,1),L);
22

23 for i = 1:L
24 left = ([data ones(size(data,1),1)] * H{i}') > 0; % split

the ... data
25 ens(left,i) = class_D(E{i,1},data(left,:));
26 ens(˜ left,i) = class_D(E{i,2},data(˜ left,:));
27 % take the labels from the the i-th classifier
28 end
29 al = mode(ens')'; % plurality vote labels
30

31 e = Inf; % pre-set ensemble error
32 if nargin > 4
33 e = mean(al ˜ = labels); % the ensemble error
34 end
35 %---------------------------------------------------------%

6.A.6 ECOC

1 %---------------------------------------------------------%
2 c = 6; % number of classes
3

4 % Exhaustive code
5 C_s = dec2bin(1:2ˆ(c-1)-1,c)'; % string code matrix
6 C_n = reshape(str2num(C_s(:)),size(C_s)); % numerical
7 %---------------------------------------------------------%



7
CLASSIFIER SELECTION

7.1 PRELIMINARIES

The presumption in classifier selection is that there is an oracle that can identify the
best expert for a particular input x. This expert’s decision is accepted as the decision
of the ensemble for x. The operation of a classifier selection example is shown in
Figure 7.1.

We note that classifier selection is different from creating a large number of
classifiers and then selecting an ensemble among these. We call the latter approach
overproduce and select and discuss it in Chapter 8.

The idea of using different classifiers for different input objects was suggested
by Dasarathy and Sheela back in 1979 [82]. They combine a linear classifier and
a k-nearest neighbor (k-nn) classifier. The composite classifier identifies a conflict
domain in the feature space and uses k-nn in that domain while the linear classifier
is used elsewhere. In 1981, Rastrigin and Erenstein [322] gave a methodology for
classifier selection almost in the form it is used now.

We may assume that the classifier “realizes” its competence for labeling x. For
example, if the 10-nearest neighbor is used, and 9 of the 10 neighbors suggest the
same class label, then the confidence in the decision is high. If the classifier outputs are
reasonably well calibrated estimates of the posterior probabilities, then the confidence
of classifier Di ∈  for object x can be measured as

C(Di|x) =
c

max
j=1

P̂(𝜔j|x, Di), (7.1)

where c is the number of classes.

Combining Pattern Classifiers: Methods and Algorithms, Second Edition. Ludmila I. Kuncheva.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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FIGURE 7.1 Operation of the classifier selection ensemble.

To construct a classifier selection ensemble, the following questions need to be
answered:

� How do we build the individual classifiers? Should they be stable or unstable?
Homogeneous or heterogeneous? Woods et al. [421] considered heterogeneous
selection ensembles but found little improvement on the best classifier (which
often happens to be the k-nearest neighbor classifier). Some authors suggest
using bagging or boosting to develop the ensemble and use a selection strategy
for combining the outputs [20, 255, 363].

� How do we evaluate the competence of the classifiers for a given x?
� Once the competences are found, what selection strategy shall we use? The

standard strategy is to select one most competent classifier and take its decision.
However, if there are several classifiers of equally high competence, do we take
one decision or shall we fuse the decisions of the most competent classifiers?
When is it beneficial to select one classifier to label x and when should we be
looking for a fused decision?

7.2 WHY CLASSIFIER SELECTION WORKS

Consider an ensemble  = {D1,… , DL}. Let the feature space ℝn be divided into
K selection regions (called also regions of competence), where K > 1. Denote the
regions R1,… , RK . These regions are not associated with specific classes, nor do
they need to be of a certain shape or size. The following example demonstrates the
rationale for classifier selection ensembles.
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◻◼ Example 7.1 Selection regions
An example of partitioning of the feature space ℝ2 into three selection regions is
shown in Figure 7.2. Depicted is a banana data set with 2000 data points. There are
two classes and therefore two classification regions.
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FIGURE 7.2 An example of partitioning the feature space into three selection regions.

Suppose that we have three classifiers: D1, which always predicts class “black”;
D2, which always predicts class “gray”; and a linear classifier D3 whose discriminant
function is shown as the horizontal dashed line in Figure 7.2. This classifier predicts
class “black” above the line and class “gray” underneath. The individual accuracy
of each of the three classifiers is approximately 0.5. A majority vote between them
is also useless as it will always match the decision of the arbiter D3 and lead to
50% error as well. However, if we use the three selection regions and nominate one
classifier for each region (D1 in R1, D2 in R2, and D3 in R3), the error of the ensemble
will be negligible.

This example only shows the potential of the classifier selection approach. In practice,
we will hardly be so fortunate to find regions that will have such a dramatic effect on
the ensemble performance.

Let D∗ ∈  be the ensemble member with the highest average accuracy over the
whole feature spaceℝn. Denote by P(Di|Rj) the probability of correct classification by
Di in region Rj. Let Di(j) ∈  be the classifier responsible for region Rj, j = 1,… , K.
The overall probability of correct classification of our classifier selection system is

P(correct) =
K∑

j=1

P(Rj)P(Di(j)|Rj), (7.2)
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where P(Rj) is the probability that an input x drawn from the distribution of the
problem falls in Rj. To maximize P(correct), we assign Di(j) so that

P(Di(j)|Rj) ≥ P(Dt|Rj), ∀ t = 1,… , L. (7.3)

Ties are broken randomly. From Equations 7.2 and 7.3,

P(correct) ≥
K∑

j=1

P(Rj)P(D∗|Rj) = P(D∗). (7.4)

The above equation shows that the combined scheme is at least as good as the
best classifier D∗ in the pool , regardless of the way the feature space has been
partitioned into selection regions. The only condition (and, of course, the trickiest
one) is to ensure that Di(j) is indeed the best amongst the L classifiers from  for
region Rj. The extent to which this is satisfied determines the success of the classifier
selection model.

7.3 ESTIMATING LOCAL COMPETENCE DYNAMICALLY

Let x be the object to be labeled. In dynamic classifier selection, the “competences”
of the ensemble members are estimated in the vicinity of x, and the most competent
classifier is chosen to label x [92, 153, 421].

7.3.1 Decision-Independent Estimates

Giacinto and Roli [153] call this approach “a priori” because the competence is
determined based only on the location of x, prior to finding out what labels the
classifiers suggest for x.

7.3.1.1 Direct k-nn Estimate One way to estimate the competence is to identify
the K nearest neighbors of x from either the training set or a validation set, and find
out how accurate the classifiers are on these K objects [322, 421]. K is a parameter
of the algorithm, which needs to be tuned prior to the operational phase.

◻◼ Example 7.2 Decision-independent competence
Consider the fish data and two classifier models: the linear discriminant classifier
(LDC) and the Naı̈ve Bayes classifier (NB). The data was generated with 10%
label noise. The two classifiers were trained on the noisy data and evaluated on
the noise-free data. The competence values were calculated for each point on the
grid using the direct k-nn approach with K = 10 neighbors. Figures 7.3a and 7.3b
show the competence heat map for the two classifiers. Dark color indicates low
competence, and light color, high competence. The classification error with respect
to the noise-free data is shown in the subplot caption.
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(b) Naı̈ve Bayes 27.64%(a) Linear 30.52% (c) Selection ensembles 24.64%

FIGURE 7.3 (a) and (b): competence heat map (direct k-nn) for the LDC and NB classifiers
for the fish data with 10% label noise and K = 10 neighbors (high competence is shown with
lighter color); (c) the selection regions for NB (shaded) and LDC (the remaining part of the
space). The classification error with respect to the noise-free data is also given.

The competence patterns are as expected. For example, LDC classifies all points
in the left part of the space as gray dots, and the right part as the black dots (the fish).
Thus, the part of the fish in the gray class region appears in dark color because the
classifier is mistaken there (not competent). By the same argument, the fish “head”
in the right region is correctly recognized, hence the light color. The variation of the
gray level intensity is due to the label noise.

Figure 7.3c shows the data set and the classification boundaries of the two classi-
fiers. The regions where NB is deemed to have a higher competence than the linear
classifier are shaded. In a classifier selection ensemble, the oracle will authorise NB
to make the decision in the shaded regions and LDC to make the decision elsewhere.
As shown in Figure 7.3c, the error in the ensemble is smaller than the error of either
of the two individual classifiers.

The competence estimate depends on several factors, among which is the size of the
training or validation set on which the estimate is calculated. The following example
illustrates this point.

◻◼ Example 7.3 Effect of sample size on the competence maps
The LDC and the Naı̈ve Bayes classifier (NB) were applied on the banana data set.
(The MATLAB code for generating the two classes is shown in Appendix 7.A.1.)
The two “bananas” are aligned, and can be generated with different degrees of noise.
Figure 7.4 shows the competence heat maps for LDC and NB for two sizes of the
training set: N = 100 objects (50 per class) and N = 800 (400 per class). In all cases,
the direct k-nn method was applied with K = 10.

The above example suggests that, for large N, the confidence pattern is generally
more pronounced, in that the regions of high and low confidence are more consistent
with the expected patterns. Observe that the competence maps for the linear classifier
are similar for the two values of N, whereas the maps for NB are quite different.
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(b) N = 800

(c) N = 100 (d) N = 800

FIGURE 7.4 Competence heat map (direct k-nn) for the aligned banana data for two sizes
of the training set. (a) and (b): linear classifier; (c) and (d): NB classifier. High competence is
shown with lighter color (K = 10).

This raises the question about the size of the reference set (training or validation) on
which the competence is dynamically estimated. The choice of N may have a much
more dramatic effect on the results compared to the choices of other parameters of
the algorithm, for example, the number of neighbors K. Besides, the choice of N
could have different effects for different base classifiers.

7.3.1.2 Distance-based k-nn Estimate If the classifiers produce soft outputs, these
can be used in the estimate. Giacinto and Roli [153] propose to estimate the compe-
tence of classifier Di as a weighted average. Denote by Pi(yj|zj) the estimate given by
Di of the probability for the true class label yj of object zj. For example, suppose that
the output of Di for zj in a five-class problem is [0.1, 0.4, 0.1, 0.1, 0.3]. Let the true
class label of zj be yj = 𝜔5. Although the decision of Di would be for class 𝜔2, the
estimated probability for the correct class label is Pi(yj|zj) = 0.3. The probabilities
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are weighted by the distances to the K neighbors [153,372]. Let Nx denote the set of
the K nearest neighbors of x. The competence of classifier Di for x is

C(Di|x) =

∑
zj∈Nx

Pi(yj|zj)
1

d(x,zj)∑
zj∈Nx

1
d(x,zj)

, (7.5)

where d(x, zj) is the distance between x and its nearest neighbor zj ∈ Nx according
to an appropriate distance measure chosen in advance.

◻◼ Example 7.4 Competence maps for the distance-based k-nn method
We used the banana data set from the previous example and LDC for the same two
data sizes. This time, the competences were calculated with the distance-based k-nn
method for two values of the number of neighbors K, K = 2 (Figure 7.5) and K = 10
(Figure 7.6).

(a) N = 100 (b) N = 800
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FIGURE 7.5 Competence heat map (distance-based k-nn) for the aligned banana data for
two sizes of the training set and the linear classifier. High competence is shown with lighter
gray color (K = 2).

The figures show much smoother competence maps even for K = 2. There is also
an indication that for a combination of smaller N and larger K (Figure 7.6a), the
competence map could be over-smoothed into a flat blur. This defeats the purpose of
the competence estimation approach.

The examples illustrate the sensitivity of competence estimates to the choices of
parameter values and data. Typically, such choices are not based on a rigorous pre-
study, hence the competence maps may turn out to be somewhat spurious. Even so,
the classifier selection approach may still work well. If the ensemble is based on
strong classifiers, a strong classifier will be elected to make a decision even if it is not
the most competent judge for the object submitted for labeling. Such situations will
happen in parts of the feature space where the estimates of the classifiers’ competence
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(a) N = 100
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(b) N = 800

FIGURE 7.6 Competence heat map (distance-based k-nn) for the aligned banana data for
two sizes of the training set and the linear classifier. High competence is shown with lighter
gray color (K = 10).

are not very precise. Assuming that the competences will be estimated correctly in
most of the space, the classifier selection strategy will work. Note that the competence
estimates do not have to be precise as long as they are, what we can call, “top correct”.
This means that the true most competent classifier has the largest competence value
compared to the other classifiers. The exact order of the remaining competences does
not matter, nor do the exact values.

7.3.1.3 Potential Functions Estimate Rastrigin and Erenstein [322] also consider
a distance-based competence coming from the so-called potential functions model.
We regard the feature space as a field and assume that each point in the data set
contributes to the potential in x. The potential for classifier Di at x corresponds to
its competence. The higher the potential, the higher the competence. The individual
contribution of zj ∈ Z to C(Di|x) is

𝜙(x, zj) =
gij

1 + 𝛼ij(d(x, zj))2
, (7.6)

where

gij =
{

1, if Di recognizes correctly zj ∈ z
−1, otherwise,

(7.7)

and 𝛼ij is a parameter which weights the contribution of zj. In the simplest case,
𝛼ij = 𝛼 for all i = 1,… , L, and all j = 1,… , N. The competence is calculated as

C(Di|x) =
∑
zj∈Z

𝜙(x, zj). (7.8)
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It is not clear whether the distance-based versions are better than the direct k-nn
estimate of the competence. One advantage though is that ties are less likely to occur
for the distance-based estimates.

7.3.2 Decision-Dependent Estimates

This approach is termed “a posteriori” in Ref. [153]. The class predictions of all the
classifiers are known.

7.3.2.1 Direct k-nn Estimate Let si ∈ Ω be the class label assigned to x by classi-

fier Di. Denote by N
(si)
x the set of K nearest neighbors of x from Z, which classifier Di

labeled as si. The competence of classifier Di for the given x, C(Di|x), is calculated
as the proportion of elements of N

(si)
x whose true class label was si. This estimate is

called, in Ref. [421], the local class accuracy.

7.3.2.2 Distance-based k-nn Estimate Denote by Pi(si|zj) the estimate given by
Di of the probability that the true class label of zj is si. The competence of Di can be
measured by Pi(si|zj) averaged across the data points in the vicinity of x whose true
labels were si. Using the distances to x as weights, we calculate the competence of
Di as

C(Di|x) =

∑
zj

Pi(si|zj)
1

d(x,zj)∑
zj

1
d(x,zj)

, (7.9)

where the summation is on zj ∈ Nx such that yj = si. A different number of neighbors

K can be considered for Nx and N
(si)
x . Woods et al. [421] found the direct decision-

dependent k-nn estimate of competence superior to that provided by the decision-
independent estimate. They recommend K = 10 for determining the set N(si)

x .

◻◼ Example 7.5 Estimation of local competence of classifiers
Table 7.1 gives the true class labels and the guessed class labels using classifier Di for
a hypothetical set of 15 nearest neighbors of x, Nx. The indices of zj in the first row in
the table are the actual values of zj ∈ ℝ and x ∈ ℝ is located at 0. Euclidean distance
is used, for example, d(x, z3) = 3. We assume that Di provides only label outputs.

TABLE 7.1 True and guessed class labels for the 15 hypothetical nearest neighbors of
x sorted by proximity to x

Object (zj) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

True label (yj) 2 1 2 2 3 1 2 1 3 3 2 1 2 2 1

Guessed label (si) 2 3 2 2 1 1 2 2 3 3 1 2 2 2 1



PRE-ESTIMATION OF THE COMPETENCE REGIONS 239

The probability for the chosen output is Pi(si|zj) = 1 and for any other s ∈ Ω, s ≠ si,
we have Pi(s|zj) = 0. Thus, if the suggested class label is 𝜔2, the soft vector with the
suggested probabilities will be [0, 1, 0].

The decision-independent direct k-nn estimate of competence of Di would be
the accuracy of Di calculated on Nx, that is, C(Di|x) = 10

15
≈ 0.33. Suppose that the

output suggested by Di for x is 𝜔2. The decision-dependent direct k-nn estimate of

competence of Di for K = 5 is the accuracy of Di calculated on N
(𝜔2)
x where only

the five nearest neighbors labeled in 𝜔2 are considered. Then N(𝜔2)
x consists of

objects {1, 3, 4, 7, 8}. As four of the elements of N(𝜔2)
x have true labels 𝜔2, the local

competence of Di is C(Di|x) = 4
5
= 0.80.

The decision-independent distance-based k-nn estimate of the competence of Di
(using the whole of Nx) will be

C(Di|x) =
1 + 1

3
+ 1

4
+ 1

6
+ 1

7
+ 1

9
+ 1

10
+ 1

13
+ 1

14
+ 1

15

1 + 1
2
+ 1

3
+⋯ + 1

15

≈ 0.70.

The potential function estimate is calculated in a similar way.
Once again, let the output suggested by Di for x be 𝜔2. For the decision-dependent

estimate, using the whole of Nx and taking only the elements whose true label
was 𝜔2,

C(Di|x) =
1 + 1

3
+ 1

4
+ 1

7
+ 1

13
+ 1

14

1 + 1
3
+ 1

4
+ 1

7
+ 1

11
+ 1

13
+ 1

14

≈ 0.95.

Woods et al. [421] give a procedure for tie break in case of equal competences. In view
of the potential instability of the competence estimates, simple tie-break procedures
should suffice.

The search for better competence estimation methods continues with

� probabilistic competence measures [418, 419];
� distribution match between x and the data used to train the base classifiers,

called “Bank of classifiers” [367];
� more elaborate but accurate and adaptive estimates of the neighborhood of x

[91, 156]; and
� using diversity and accuracy together in the selection criterion [363, 424].

7.4 PRE-ESTIMATION OF THE COMPETENCE REGIONS

Estimating the competence dynamically might be too computationally demanding.
First, the K nearest neighbors of x have to be found. For the decision-dependent
estimates of competence, L × K neighbors might be needed. Second, the estimates
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of the competence have to be calculated. To decrease the computational complexity,
competences can be pre-calculated across regions of competence. When x is submitted
for classification, the region of competence in which x falls is identified and x is
labeled by the classifier responsible for that region. The problem becomes one of
identifying the regions of competence and the corresponding classifiers.

The regions of competence can be chosen arbitrarily as long as we have reliable
estimates of the competences within these regions. Denote by K the number of regions
of competence. This number does not have to be equal to the number of classifiers L
or the number of classes c. Next, we decide which classifier from  = {D1,… , DL}
should be picked for each region Rj, j = 1,… , K. Some classifiers might never be
nominated and therefore they are not needed in the operation of the combination
scheme. Even the classifier with the highest accuracy over the whole feature space
might be dropped from the final set of classifiers. On the other hand, one classifier
might be nominated for more than one region.

7.4.1 Bespoke Classifiers

This is perhaps the easiest way of building a classifier selection ensemble. The regions
R1,… , RK can be chosen prior to training any classifier. A classifier can be trained on
the data for each region Rj to become the expert there, denoted Di(j). The advantage
of this approach is that the classifiers are trained exclusively on their own regions,
which could give them extra competence. The drawback, however, is that the regions
may not contain enough data to ensure sound training. This can be addressed by using
a simple classifier model.

◻◼ Example 7.6 Classifier selection ensembles of bespoke classifiers
Two competence regions were formed on the fish data by a random linear split.
Figure 7.7 shows:

� (a) The classification regions of LDC trained on the noise-free data. The shaded
area is what LDC classifies as black dots (the fish).

� (b) The regions of the selection ensemble of LDCs trained on the respective
regions of competence.

(d) 2 NB 13.24%(c) NB 26.92%(b) 2 LDC 26.32%(a) LDC 30.52%

FIGURE 7.7 Classification regions of LDC and NB, and for two selection ensembles with
random regions of competence delineated by the thick line in (b) and (d). The classification
error is given in the captions.
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� (c) The classification regions of NB trained on the noise-free data. The shaded
area is what NB classifies as black dots (the fish).

� (d) The regions of the selection ensemble of NB classifiers trained on the
respective regions of competence.

The classification errors on the noise-free data are shown in the subplot captions.

The example shows that the using regions of competence may lead to a dramatic
improvement on the individual classifier’s error. However, this is not guaranteed but
it is likely, and more so if the regions of competence are determined by some analysis
rather than randomly.

7.4.2 Clustering and Selection

The feature space can be split into regular regions but in this case some of them
might contain only a small amount of data points and lead to spurious estimates of
the competences. To ensure that the regions contain a sufficient amount of points we
can use clustering, and regard each cluster as a region of competence. The classifier
whose accuracy is estimated to be the highest within a region R will be assigned to
make the decisions for any future x ∈ R.

A classifier selection method called clustering and selection is proposed in Refs.
[232, 234]. Figure 7.8 shows the training and operation of clustering and selection.

The clustering approach makes sure that there is sufficient data to train or evaluate
the classifier. However, this approach has a serious drawback. If the classes are

CLUSTERING AND SELECTION

Training: Given is a labeled data set Z = {z1,… , zN}.

1. Choose the ensemble size L and the base classifier model.
2. Design the individual classifiers D1,… , DL using Z.
3. Pick the number of regions K.
4. Disregarding the class labels, cluster Z into K clusters, C1,… , CK , using, for example,

the K-means clustering procedure [106]. Find the cluster centroids v1,… , vK as the
arithmetic means of the points in the respective clusters.

5. For each cluster Cj, (defining region Rj), estimate the classification accuracy of
D1,… , DL. Pick the most competent classifier for Rj and denote it by Di(j).

6. Return v1,… , vK and Di(1),… , Di(K).

Operation: For each new object

1. Given the input x ∈ ℝn, find the nearest cluster center from v1,… , vK , say, vj.
2. Use Di(j) to label x, that is, 𝜇k(x) = di(j),k(x), k = 1,… , c.

Return the ensemble label of the new object.

FIGURE 7.8 Training and operation algorithm for clustering and selection.
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compact and fairly separable, each class will appear as a cluster and will be designated
as a competence region. Then, only a small fraction of the data will be labeled in the
alternative classes. This presents a difficult imbalanced classification problem in the
region of competence.

7.5 SIMULTANEOUS TRAINING OF REGIONS AND CLASSIFIERS

An interesting ensemble method which belongs to the classifier selection group
is the so-called mixture of experts (ME) [194, 198, 199, 291]. As illustrated in
Figure 7.9, in this model the selector makes use of a separate classifier which deter-
mines the participation of the experts in the final decision for an input x. The ME
architecture has been proposed for neural networks. The “experts” are neural net-
works (NNs), which are trained so that each NN is responsible for a part of the feature
space. The selector uses the output of another neural network called the gating net-
work. The input to the gating network is x and the output is a set of coefficients
P1,… , PL, all depending on x. Typically,

∑L
i=1 Pi = 1, and Pi is interpreted as the

probability that expert Di is the most competent expert to label the particular input x.
The probabilities are used together with the classifier outputs in one of the following
ways:

� Stochastic selection. The classifier to label x is chosen by sampling from  =
{D1,… , DL} according to the distribution P1,… , PL.

� Winner-takes-all. The classifier to label x is chosen by the maximum of Pi.
� Weights. The probabilities are used as the weighting coefficients to the classifier

outputs. For example, suppose that the classifiers produce soft outputs for the c
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FIGURE 7.9 Mixture of experts.
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classes, di,j(x) ∈ [0, 1], i = 1,… , L, j = 1,… , c. Then the final (soft) output for
class 𝜔j is

𝜇j(x) =
L∑

i=1

Pi di,j(x). (7.10)

If di,j(x) are interpreted as probabilities, then Pi can be thought of as mixing propor-
tions in estimating 𝜇j(x) as a mixture of distributions.

The most important question is how to train the ME model. Two training
procedures are suggested in the literature. The first procedure is the standard error
backpropagation implementing a gradient descent. According to this procedure, the
training of an ME is no different in principle to training a single neural network with
a complicated structure. The second training approach is based on the expectation
maximization method which appears to be faster than the gradient descent [199].
ME has been designed mainly for function approximation rather than classification.
Its key importance for multiple classifier systems is the idea of training the gating
network (therefore the selector) together with the individual classifiers through a
standardized training protocol. A similar approach for training a neural network
ensemble was proposed by Smieja [371], called a “pandemonium system of
reflective agents.”

The limitation of the ME training algorithm is that all base classifiers, as well
as the gating classifier, must be neural networks. A possible solution for other base
classifiers are the evolutionary algorithms (EA) [192]. Using EA, the regions of
competence and the classifiers can be trained together.

◻◼ Example 7.7 A toy evolutionary algorithm for the banana data
Consider a classifier selection ensemble of three linear classifiers for the banana data.
A simple evolutionary algorithm was tried, aiming at splitting the space into three
regions of competence. The algorithm evolved three points as the centroids of the
regions of competence. The regions themselves were the Voronoi cells corresponding
to the centroids.

A population of chromosomes was evolved for 150 generations. Each chromosome
contained the coordinates of the three centroids (six values in ℝ). At each genera-
tion, only the mutation operator was applied by adding small Gaussian noise to the
centroids. The set of offspring was created by mutating the whole parent population.
The fitness function was the accuracy of the ensemble, where a linear classifier was
trained in each cell. The classifiers in the cells were trained and tested on the same
training set. After the fitness of all chromosomes in the offspring set was evaluated,
the combined set of parents and children was arranged by fitness, and cut to the
population size. Thus, the best subset continued as the next generation.

Figure 7.10 shows the classification regions of the evolved ensemble. The centroids
and the boundaries of the regions of competence are also plotted. The testing accuracy
of the evolved ensembles was typically between 88% and 90%.
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FIGURE 7.10 Classification regions of the evolved ensemble. The centroids and boundaries
of the regions of competence are also shown (dashed lines).

Standalone MATLAB code for this example, including the plotting, is given in
Appendix 7.A.2. A more detailed description of a genetic algorithm is given in Section
9.4.3.

7.6 CASCADE CLASSIFIERS

Cascade classifiers can be thought of as a version of a classifier selection ensemble.
They are extremely useful for real-time systems where the majority of the data will
only need to be processed by a few classifiers [13, 57, 116, 146, 230, 247]. When the
classifier’s confidence is high, we take the class suggested by this classifier as the
label for x. Alternatively, if the confidence is low, x is passed on to the next classifier
in the cascade, which processes it in the same fashion. Finally, if the last classifier
is also uncertain, the cascade might refrain from making a decision or may select
the most likely class anyway. The worth of cascade classifiers was proved beyond
doubt by the face detection algorithm of Viola and Jones [405] which is a cascade of
AdaBoost ensembles of decision stumps.

APPENDIX: SELECTED MATLAB CODE

7.A.1 BANANA DATA

1 %-------------------------------------------------------------------%
2 function [d, labd] = samplebanana(N,na)
3 % N = number of points per class, na = noise amplitude
4 t = -linspace(-pi/4,pi,N)’; z = [sin(t),cos(t)];
5 d = [randn(N,2)*na + 1.5*z; randn(N,2)*na + z];
6 labd = [ones(N,1);2*ones(N,1)];
7 %-------------------------------------------------------------------%
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7.A.2 EVOLUTIONARY ALGORITHM FOR A SELECTION ENSEMBLE
FOR THE BANANA DATA

1 %-------------------------------------------------------------------%
2 function EA_SelectionEnsemble
3 close all
4 global tr trl M N
5 %% Set the parameters
6 N = 600; na = 0.17; % # objects and noise amplitude
7 %........................................................
8 %% Generate the data
9 [tr,trl] = samplebanana(N/2,na); % training data

10 [ts,tsl] = samplebanana(N/2,na); % testing data
11 %........................................................
12 %% Evolve Voronoi cells
13 ps = 20; % population size
14 M = 3; % # of regions of competence
15 T = 150; % generations
16 Pm = 0.8; % mutation shift
17 P = rand(ps,M*2)*8 - 4; % initial population
18 f = fitness(P); % evaluate initial parents
19 for i = 1:T
20 O = P + Pm*randn(size(P)); % mutation
21 O(O<-4) = 0; O(O>4) = 0; % bring outliers to center
22 F = [f,fitness(O)]; % fitness of parents & offspring
23 [t1,t2] = sort(F,’descend’);
24 G =[P;O]; P = G(t2(1:ps),:); % survivors
25 f = t1(1:ps); % fitness of the survivors
26 end
27 %........................................................
28 %% Estimate the final ensemble accuracy
29 % retrieve the centroids from the best chromosome
30 cen = reshape(P(1,:),M,2);
31 [xxs,yys] = meshgrid(-4:0.01:4,-4:0.01:4);
32 xx = xxs(:); yy = yys(:); % grid points
33 d = pdist2(cen,tr); [˜,reg] = min(d);
34 d2 = pdist2(cen,[xx,yy]);[˜,rege] = min(d2);
35 d3 = pdist2(cen,ts); [˜,regt] = min(d3);
36 BigLab = zeros(size(xx)); TestLab = zeros(size(tsl));
37 for j = 1:M
38 if sum(reg==j) > 3
39 la2 = classify([xx(rege==j),yy(rege==j)],...
40 tr(reg==j,:),trl(reg==j));
41 BigLab(rege == j) = la2;
42 la3 = classify([ts(regt==j,1),...
43 ts(regt==j,2)],tr(reg==j,:),trl(reg==j));
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44 TestLab(regt == j) = la3;
45 end
46 end
47 fprintf(’Ensemble testing error = %.2f %% \n’,...
48 mean(TestLab == tsl)*100)
49 %........................................................
50 %% Plot the data
51 figure(’color’,’w’), hold on
52 plot(xx(BigLab == 1),yy(BigLab == 1),’g.’,’markers’,10)
53 plot(xx(BigLab == 2),yy(BigLab == 2),’r.’,’markers’,10)
54 plot(tr(trl == 1,1),tr(trl == 1,2),’k.’,’markers’,10)
55 plot(tr(trl == 2,1),tr(trl == 2,2),’k.’,’markers’,10,...
56 ’color’,[0.87, 0.87, 0.87])
57 voronoi(cen(:,1),cen(:,2),’k’)
58 plot(cen(:,1),cen(:,2),’ko’,’markersize’,15)
59 set(gca,’FontName’,’Calibri’,’FontSize’,16,’layer’,’top’)
60 axis([-4 4 -4 4]),axis square, grid on
61 %........................................................
62 end
63

64 function f = fitness(P)
65 global tr trl M N
66 for i = 1:size(P,1)
67 cen = reshape(P(i,:),M,2); d = pdist2(cen,tr);
68 [˜,reg] = min(d); % regions of competence
69 for j = 1:M
70 z(j) = 0;
71 if sum(reg==j) > 5
72 la = classify(tr(reg==j,:),...
73 tr(reg==j,:),trl(reg==j));
74 z(j) = sum(la == trl(reg==j));
75 end
76 end
77 f(i) = sum(z)/N;
78 end
79 end
80 %-------------------------------------------------------------------%



8
DIVERSITY IN CLASSIFIER
ENSEMBLES

Common sense suggests that the classifiers in the ensemble should be as accurate as
possible and should not make coincident errors. Ensemble-creating methods which
rely on inducing diversity in an intuitive manner have proven their value. Even
weakening the individual classifiers for the sake of better diversity appears to be
an excellent ensemble building strategy, unequivocally demonstrated by the iconic
AdaBoost. Ironically, trying to measure diversity and using it explicitly in the process
of building the ensemble does not share the success of the implicit methodologies.

8.1 WHAT IS DIVERSITY?

If we have a perfect classifier which makes no errors, then we do not need an
ensemble. If however, the classifier does make errors, then we seek to complement
it with another classifier which makes errors on different objects. The diversity of
the classifier outputs is therefore a vital requirement for the success of the ensemble.
However, diversity alone is not responsible for the ensemble performance. It is
intricately related with other characteristics of the ensemble. For example, individual
classifier accuracy can be sacrificed in order to make the classifiers more diverse. This
pays off by a more accurate ensemble compared to that employing the more accurate
classifiers. Then how do we strike a compromise between diversity and individual
accuracy? How far can we “shake” the ensemble members without destroying the
ensemble performance? How can we implement this process, how can we control the
degree of this compromise?

Combining Pattern Classifiers: Methods and Algorithms, Second Edition. Ludmila I. Kuncheva.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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(d) High diversity. Good estimate.

(c) Low diversity. Good estimate.

(b) High diversity. Poor estimate.

(a) Low diversity. Poor estimate.

FIGURE 8.1 Examples of low and high diversity for a point-value estimation. ∙—true value
y; ◦—estimate ŷ; ▴—estimator outputs.

8.1.1 Diversity for a Point-Value Estimate

When the task is to approximate a numerical value by an ensemble (called a regression
ensemble), the outputs may compensate for each other’s discrepancies. The concept
of diversity for this case lends itself to mathematical analyses, and so the area has
been well researched [56, 220].

Consider a simple example which illustrates the problems associated with the con-
cept of ensemble diversity. The task is to estimate an unknown value y. The ensemble
consists of just two estimators, and the estimate ŷ is calculated as their average.

Four cases are shown in Figure 8.1. The true y is depicted as a dot, the estimators
as triangles, and the estimate ŷ, as an open circle. The ensemble diversity for this
example can be associated with the distance between the two triangles. The closer
the triangles, the lower the diversity.

This example gives a good insight into the difficulty in unequivocally relating large
diversity to better ensemble performance. The accuracy of the individual estimators
is measured by how close the triangles are to the dot y. If both estimators are all
accurate (Figure 8.1c), diversity is necessarily small and not particularly important.
The outcome is a good estimate. On the other hand, if the estimators are inaccurate
(Figures 8.1a, 8.1b, and 8.1d), diversity may or may not be beneficial. High diver-
sity does not necessarily entail good estimate ŷ, as demonstrated by (Figure 8.1b).
Figure 8.1d shows that good estimate can be obtained from arbitrarily inaccurate
estimators as long as their deviations cancel one another. Unfortunately, engineering
such ensembles is not a trivial matter.

8.1.2 Diversity in Software Engineering

A major issue in software engineering is the reliability of software. Multiple programs
(called versions) can be run in parallel in the hope that if one or more fail, the others
will compensate for it by producing correct outputs. It is tempting to assume that the
errors of the versions will be independent if the versions are created independently.
It appears however that independently created versions fail together on difficult
assignments and run correctly together on easy assignments [113, 262, 303]. The
programs (versions) correspond to the classifiers in the ensemble and the inputs
correspond to the points in the feature space.
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The model proposed by Littlewood and Miller [262] and developed further by
Partridge and Krzanowski [302, 303] considers a set of programs and a set of inputs.
The quantity of interest, which underpins several measures of diversity (discussed
later) is the probability that two randomly selected programs will fail simultaneously
on a randomly chosen input.

8.1.3 Statistical Measures of Relationship

Recall the types of classifier outputs detailed in Section 4.1, and in particular the oracle
output. For a given data set Z, classifier Di produces an output vector yi such that

yij =
{

1, if Di classifies object zj correctly,
0, otherwise.

(8.1)

Clearly, oracle outputs are only possible for a labeled data set and their use is limited
to the design stage of the classifiers and the ensemble.

Various measures of relationship between two variables can be found in statistical
literature [65, 74, 373].

8.1.3.1 Correlation Correlation coefficients can be calculated for pairs of
continuous-valued (soft) outputs. Every pair of classifiers will give rise to c coeffi-
cients, one per class. To get a single measure of diversity between the two classifiers,
the correlations can be averaged across classes.

Correlation can be calculated also for a pair of oracle outputs because we can treat
the two values (0 and 1) numerically. To illustrate the calculation, consider a table of
the joined (oracle) outputs of classifiers Di and Dj as shown in Table 8.1. The entries
in the table are the probabilities for the respective pair of correct/incorrect outputs.

The correlation between two binary classifier outputs is

𝜌i,j =
ad − bc√

(a + b)(c + d)(a + c)(b + d)
. (8.2)

The derivation of 𝜌 is given in Appendix 8.A.1.

8.1.3.2 The Q Statistic Using Table 8.1, Yule’s Q statistic [429] for classifiers Di
and Dj, is

Qi,j =
ad − bc
ad + bc

. (8.3)

TABLE 8.1 The 2 × 2 Relationship Table with Probabilities

Dj correct (1) Dj wrong (0)

Di correct (1) a b
Di wrong (0) c d

Total, a + b + c + d = 1
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For statistically independent classifiers, Qi,j = 0. Q varies between −1 and 1.
Classifiers that tend to recognize the same objects correctly will have positive values
of Q. For any two classifiers, Q and 𝜌 have the same sign, and it can be proved that|𝜌| ≤ |Q|.
8.1.3.3 Interrater Agreement, 𝜅 A statistic developed as a measure of interrater
reliability, called 𝜅, can be used when different raters (here classifiers) assess subjects
(here zj) to measure the level of agreement while correcting for chance [128]. For c
class labels, 𝜅 is defined on the c × c coincidence matrix M of the two classifiers. The
entry mk,s of M is the proportion of the data set (used currently for testing of both Di
and Dj) which Di labels as 𝜔k and Dj labels as 𝜔s. The agreement between Di and Dj
is given by

𝜅i,j =
∑

k mkk − ABC

1 − ABC
, (8.4)

where
∑

k mkk is the observed agreement between the classifiers and “ABC” is agree-
ment by chance

ABC =
∑

k

(∑
s

mk,s

)(∑
s

ms,k

)
. (8.5)

Low values of 𝜅 signify higher disagreement and hence higher diversity. Using the
oracle output in Table 8.1

𝜅i,j =
2(ad − bc)

(a + b)(b + d) + (a + c)(c + d)
. (8.6)

The derivation of 𝜅 is shown in Appendix 8.A.1.

8.2 MEASURING DIVERSITY IN CLASSIFIER ENSEMBLES

8.2.1 Pairwise Measures

These measures and the ones discussed hitherto consider a pair of classifiers at a
time. An ensemble of L classifiers will produce L(L−1)

2
pairwise diversity values. To

get a single value we average across all pairs.

8.2.1.1 The Disagreement Measure This is probably the most intuitive measure
of diversity between a pair of classifiers. For the oracle outputs, this measure is equal
to the probability that the two classifiers will disagree on their decisions, that is,

Di,j = b + c. (8.7)

Without calling it a disagreement measure, this statistic has been used in the literature
for analyzing classifier ensembles [182, 368].
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8.2.1.2 The Double-Fault Measure The double fault measure is another intuitive
choice, as it gives the probability of classifiers Di and Dj both being wrong,

DFi,j = d. (8.8)

Ruta and Gabrys [344] note that DF is a nonsymmetrical diversity measure. In other
words, if we swap the 0s and the 1s, DF will no longer have the same value. This
measure is based on the concept that it is more important to know when simultaneous
errors are committed than when both classifiers are correct. Thus, the measure is
related by design to the ensemble performance.

All diversity measures introduced so far are pairwise. To get an overall value for
the ensemble we can average across all pairs. Choi and coauthors [74] list 76 (!)
binary similarity and distance measures, each of which can be adopted as a diversity
measure.

8.2.2 Nonpairwise Measures

The measures of diversity introduced below consider all the classifiers together and
calculate directly one diversity value for the ensemble. Oracle classifier outputs are
assumed again, where 1 means that the object is correctly labeled, and 0, that the
object is misclassified.

8.2.2.1 The Entropy Measure E Intuitively, the ensemble is most diverse for
a particular zj ∈ Z when ⌊L∕2⌋ of the votes for this object are 0s and the other
L − ⌊L∕2⌋ votes are 1s.1 If they all were 0s or all were 1s, there is no disagreement,
and the classifiers cannot be deemed diverse. One possible measure of diversity based
on this concept is

E = 1
N

2
L − 1

N∑
j=1

min

{(
L∑

i=1

yij

)
,

(
L −

L∑
i=1

yij

)}
, (8.9)

where yij is the oracle output of classifier Di for object zj. E varies between 0 and 1,
where 0 indicates no difference and 1 indicates the highest possible diversity. Let all
classifiers have the same individual accuracy p. While the value 0 is achievable for any

number of classifiers L and any p, the value 1 can only be attained for p ∈
[

L−1
2L

, L+1
2L

]
.

It should be noted that E is not a standard entropy measure because it does
not use the logarithm function. A classical version of this measure is proposed by
Cunningham and Carney [78] (we denote it here as ECC). Taking the expectation over
the whole feature space, letting the number of classifiers tend to infinity (L → ∞),
and denoting by a the proportion of 1s (correct outputs) in the ensemble, the two

1⌊a⌋ is the “floor” function. It returns the largest integer smaller than a. ⌈a⌉ is the “ceiling” function. It
returns the smallest integer greater than a.
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FIGURE 8.2 The two entropies E(a) and ECC(a) plotted versus a.

entropies are

E(a) = 2min{a, 1 − a} (8.10)

ECC(a) = −a log(a) − (1 − a) log(1 − a). (8.11)

Figure 8.2 plots the two entropies versus a.
The two measures are equivalent up to a (nonlinear) monotonic transformation.

This means that they will have a similar pattern of relationship with the ensemble
accuracy.

8.2.2.2 Kohavi–Wolpert Variance Kohavi and Wolpert derived a decomposition
formula for the error rate of a classifier [215]. Consider a classifier model. Let y be
the predicted class label for x. The variance of y across different training sets which
were used to build the classifier is defined to be

variancex = 1
2

(
1 −

c∑
i=1

P(y = 𝜔i|x)2

)
. (8.12)

The variance (8.12) is the Gini index for the distribution of the classifier output
regarded as a set of probabilities, P(y = 𝜔1|x),… , P(y = 𝜔c|x).

We use the general idea for calculating the variance for each zj in the following
way. We look at the variability of the predicted class label for zj for the given
training set using the classifier models D1,… , DL. Instead of the whole of Ω, here we
consider just the two possible outputs: correct and incorrect. In the Kohavi–Wolpert
framework, P(y = 𝜔i|zj) is estimated as an average across different data sets. In our
case, P(y = 1|zj) and P(y = 0|zj) will be obtained as an average across the set of
classifiers , that is,

P̂(y = 1|zj) =
l(zj)

L
and P̂(y = 0|zj) =

L − l(zj)

L
, (8.13)
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where l(zj) is the number of correct votes for zj among the L classifiers, that is,

l(zj) =
L∑

i=1

yi,j.

Substituting Equation 8.13 in Equation 8.12,

variancezj
= 1

2

(
1 − P̂(y = 1|zj)

2 − P̂(y = 0|zj)
2) , (8.14)

and averaging over the whole of Z, we set the KW measure of diversity to be

KW = 1
NL2

N∑
j=1

l(zj)(L − l(zj)). (8.15)

Interestingly, KW differs from the averaged disagreement measure (Equation 8.7),
denoted Dav, by a coefficient, that is,

KW = L − 1
2L

Dav. (8.16)

(The proof of the equivalence is given in Appendix 8.A.2).

8.2.2.3 Measurement of Interrater Agreement, 𝜅, for L > 2 If we denote p̄ to be
the average individual classification accuracy, then [128]

𝜅 = 1 −
1
L

∑N
j=1 l(zj)(L − l(zj))

N(L − 1)p̄(1 − p̄)
. (8.17)

It is easy to see that 𝜅 is related to KW and Dav as follows:

𝜅 = 1 − L
(L − 1)p̄(1 − p̄)

KW = 1 − 1
2p̄(1 − p̄)

Dav. (8.18)

Note that 𝜅 is not equal to the averaged pairwise kappa, 𝜅i,j, in Equation 8.6.

8.2.2.4 The Measure of Difficulty, 𝜃 The idea for this measure came from a study
by Hansen and Salamon [174]. We define a discrete random variable X taking values
in { 0

L
, 1

L
,… , 1} and denoting the proportion of classifiers in  that correctly classify

an input x drawn randomly from the distribution of the problem. To estimate the
probability mass function (pmf) of X, the L classifiers in  are run on the data set Z.

Figure 8.3 shows three possible histograms of X for L = 7 and N = 100 data
points. We assumed that all classifiers have individual accuracy p = 0.6. The leftmost
plot shows the histogram if the seven classifiers were independent. In this case the
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FIGURE 8.3 Patterns of difficulty for three classifier ensembles with L = 7, p = 0.6, and
N = 100. The dashed line is the majority vote border. The histograms show the number of
points (out of 100) which are correctly labeled by i of the L classifiers. The x-axis shows the
number of correct classifiers.

discrete random variable LX has a binomial distribution (p = 0.6, n = L). The middle
plot shows seven identical classifiers. They all recognize correctly the same 60 points
and misclassify the remaining 40 points in Z. The rightmost plot corresponds to the
case of negatively dependent classifiers. They recognize different subsets of Z. The
distributions are calculated so that each classifier recognizes correctly exactly 60 of
the 100 data points.

Hansen and Salamon [174] talk about a pattern of difficulty of the points in the
feature space, which in our case is represented by the histogram over Z. If the same
points have been difficult for all classifiers, and the other points have been easy for all
classifiers, we obtain a plot similar to the middle one (no diversity in the ensemble).
If the points that were difficult for some classifiers were easy for other classifiers, the
distribution of X is as the one on the right. Finally, if each point is equally difficult for
all classifiers, the distribution on the left is the most likely one. Diverse ensembles 
will have smaller variance of X (right plot). Ensembles of similar classifiers will have
high variance, as the pattern in the middle plot. Let the three variables X in Figure 8.3
be Xa (left), Xb (middle), and Xc (right). The three variances are

𝜃a = Var(Xa) = 0.034 𝜃b = Var(Xb) = 0.240, 𝜃c = Var(Xc) = 0.004.

Therefore we define the measure of difficulty 𝜃 to be Var(X). For convenience we
can scale 𝜃 linearly into [0, 1], taking p(1 − p) as the highest possible value. The
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higher the value of 𝜃, the worse the classifier ensemble. Ideally, 𝜃 = 0, but this is
an unrealistic scenario. More often, real classifiers are positively dependent and will
exhibit patterns similar to Figure 8.3b.

8.2.2.5 Generalized Diversity Partridge and Krzanowski [303] consider a random
variable Y , expressing the proportion of classifiers (out of L) that are incorrect (or fail)
on a randomly drawn object x ∈ ℝn. Denote by pi the probability that Y = i

L
, that is,

the probability that exactly i out of the L classifiers fail on a randomly chosen input.
(Note that Y = 1 − X, where X was introduced for 𝜃.) Denote by p(i) the probability
that i randomly chosen classifiers will fail on a randomly chosen x. Suppose that
two classifiers are randomly picked from . Partridge and Krzanowski argue that
maximum diversity occurs when failure of one of these classifiers is accompanied by
correct labeling by the other classifier. In this case, the probability of both classifiers
failing is p(2) = 0. Minimum diversity occurs when a failure of one classifier is
always accompanied by a failure of the other classifier. Then the probability of both
classifiers failing is the same as the probability of one randomly picked classifier
failing, p(1). Using

p(1) =
L∑

i=1

i
L

pi, and p(2) =
L∑

i=1

i
L

(i − 1)
(L − 1)

pi, (8.19)

the generalization diversity measure GD is defined as

GD = 1 −
p(2)
p(1)

. (8.20)

GD varies between 0 (minimum diversity when p(2) = p(1)) and 1 (maximum
diversity when p(2) = 0).

8.2.2.6 Coincident Failure Diversity Coincident failure diversity (CFD) is a mod-
ification of GD also proposed by Partridge and Krzanowski [303]. Again we use the
notation pi as the probability that exactly i out of the L classifiers fail on a randomly
chosen input. The diversity measure is defined as

CFD =

{
0, p0 = 1.0;

1
1−p0

∑L
i=1

L−i
L−1

pi, p0 < 1. (8.21)

This measure is designed such that it has a minimum value of 0 when all classifiers
are always correct or when all classifiers are simultaneously either correct or wrong.
Its maximum value 1 is achieved when all misclassifications are unique. In other
words, maximum CFD implies that at most one classifier will fail on any randomly
chosen object.

Various other diversity measures, frameworks and summaries have been proposed
[6, 25, 52, 166, 265, 342, 415], which illustrates the diversity of diversity.
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TABLE 8.2 A Distribution of the Votes of Three Classifiers (Row 27 from Table 4.3)

D1, D2, D3 111 101 011 001 110 100 010 000

Frequency 3 0 0 3 2 1 1 0

8.3 RELATIONSHIP BETWEEN DIVERSITY AND ACCURACY

The general anticipation is that diversity measures will be helpful in designing the
individual classifiers, the ensemble, and choosing the combination method. For this
to be possible, there should be a relationship between diversity and the ensemble
performance.

8.3.1 An Example

To investigate the hypothetical relationship between diversity and the ensemble accu-
racy we recall the example in Section 4.3.3. We generated all possible distributions of
correct/incorrect votes for 10 objects and 3 classifiers, such that each classifier recog-
nizes exactly 6 of the 10 objects (individual accuracy p = 0.6). The 28 possible vote
distributions are displayed in Table 4.3. The accuracy of the ensemble of three clas-
sifiers, each of accuracy 0.6, varied between 0.4 and 0.9. The two limit distributions
were called the “pattern of success” and the “pattern of failure,” respectively.

◻◼ Example 8.1 Calculation of diversity measures
We take as our example row 27 from Table 4.3. The 10 objects are distributed in
such a way that even though all three classifiers have accuracy p = 0.6, the ensemble
accuracy is low; Pmaj = 0.5. For an easier reference, the distribution of the votes
(correct/wrong) of row 27 of Table 4.3 is duplicated in Table 8.2.

Tables 8.3a, 8.3b, and 8.3c show the probability estimates for the classifier pairs.
The pairwise measures of diversity are calculated as follows:

Q1,2 = 5 × 3 − 1 × 1
5 × 3 + 1 × 1

= 7
8

Q1,3 = Q2,3 = 3 × 1 − 3 × 3
3 × 1 + 3 × 3

= −1
2

Qav = 1
3

(7
8
− 1

2
− 1

2

)
= − 1

24
≈ −0.04; (8.22)

TABLE 8.3 The Three Pairwise Tables for the Distribution in Table 8.2

D1 D2 D1 D3 D2 D3

(a) D1 0.5 0.1 (b) D1 0.3 0.3 (c) D2 0.3 0.3
D2 0.1 0.3 D3 0.3 0.1 D3 0.3 0.1
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𝜌1,2 = 5 × 3 − 1 × 1√
(5 + 1)(1 + 3)(5 + 1)(1 + 3)

= 7
12

𝜌1,3 = 𝜌2,3 = 3 × 1 − 3 × 3
(5 + 1)(1 + 3)

= −1
4

𝜌av = 1
3

( 7
12

− 1
4
− 1

4

)
= 1

36
≈ 0.03; (8.23)

Dav = 1
3

((0.1 + 0.1) + (0.3 + 0.3) + (0.3 + 0.3)) = 7
15

≈ 0.47; (8.24)

DFav = 1
3

(0.3 + 0.3 + 0.1) = 1
6
≈ 0.17. (8.25)

The nonpairwise measures KW, 𝜅, and E are calculated by

KW = 1
10 × 32

(3 × (1 × 2) + 2 × (2 × 1) + 1 × (1 × 2) + 1 × (1 × 2))

= 7
45

≈ 0.16; (8.26)

𝜅 = 1 − D
2 × 0.6 × (1 − 0.6)

= 1 −
7∕15

12∕25

= 1
36

≈ 0.03; (8.27)

E = 1
10

× 2
(3 − 1)

× (3 × min{3, 0} + 3 × min{1, 2}

+ 2 × min{2, 1} + 1 × min{1, 2} + 1 × min{1, 2})

= 7
10

= 0.70. (8.28)

The distribution of the random variables X and Y needed for 𝜃, GD, and CFD are
depicted in Figure 8.4.
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FIGURE 8.4 The frequencies and the probability mass functions of variables X and Y needed
for calculating diversity measures 𝜃, GD, and CFD.
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The mean of X is 0.6, and the mean of Y (p(1)) is 0.4. The respective measures
are calculated as follows:

𝜃 = Var(X) = (1∕3 − 0.6)2 × 0.5 + (2∕3 − 0.6)2 × 0.2 + (1 − 0.6)2 × 0.3

= 19
225

≈ 0.08; (8.29)

p(2) = 2
3
× (2 − 1)

(3 − 1)
× 0.5 = 1

6
;

GD = 1 −
1∕6

0.4
= 7

12
≈ 0.58; (8.30)

CFD = 1
1 − 0.3

(
(3 − 1)
(3 − 1)

× 0.2 + (3 − 2)
(3 − 1)

× 0.5

)
= 9

14
≈ 0.64. (8.31)

Calculated in this way, the values of the 10 diversity measures for all distributions
of classifier votes from Table 4.3 are shown in Table 8.4. To enable cross-referencing,
the last column of the table shows the majority vote accuracy of the ensemble, Pmaj.
The rows are arranged in the same order as in Table 4.3.

With 10 objects, it is not possible to model pairwise independence. The table of
probabilities for this case will contain a = 0.36, b = c = 0.24, and d = 0.16. To use
10 objects, we have to round so that a = 0.4, b = c = 0.2, and d = 0.2, but instead of
0, this gives a value of Q

Q = 0.08 − 0.04
0.08 + 0.04

= 1
3
.

In this sense, closest to independence are rows 2, 17, and 23.

8.3.2 Relationship Patterns

It is not easy to spot by eye in Table 8.4 any relationship between diversity and
accuracy for any of the diversity measures. To visualize a possible relationship we
give a scatterplot of diversity Qav versus improvement in Figure 8.5.

Each point in the figure corresponds to a classifier ensemble. The x-coordinate is
the diversity value, Qav, averaged for the three pairs of classifiers, (D1, D2), (D1, D3),
and (D2, D3). The y-value is the improvement Pmaj − p. Since each classifier has
individual accuracy 0.6, the y-value is simply Pmaj − 0.6. The scatter of the points
does not support the intuition about the relationship between diversity and accuracy.
If there was a relationship, the points would be distributed along a straight or a curved
line with a backward slop, indicating that the lower the values of Q (high diversity),
the greater the improvement. What the figure shows is that the best ensemble is not
found for the minimum Qav and the worst ensemble is not found for the maximum
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TABLE 8.4 The 10 Diversity Measures and the Majority Vote Accuracy, Pmaj, for the
28 Distributions of Classifier Votes in Table 4.3.

No Q 𝜌 D DF KW 𝜅 E 𝜃 GD CFD Pmaj

1 −0.50 −0.25 0.60 0.10 0.20 −0.25 0.90 0.04 0.75 0.90 0.9

2 0.33 0.17 0.40 0.20 0.13 0.17 0.60 0.11 0.50 0.75 0.8
3 −0.22 −0.11 0.53 0.13 0.18 −0.11 0.80 0.06 0.67 0.83 0.8
4 −0.67 −0.39 0.67 0.07 0.22 −0.39 1.0 0.02 0.83 0.90 0.8
5 −0.56 −0.39 0.67 0.07 0.22 −0.39 1.0 0.02 0.83 0.90 0.8
6 0.88 0.58 0.20 0.30 0.07 0.58 0.30 0.17 0.25 0.50 0.7
7 0.51 0.31 0.33 0.23 0.11 0.31 0.50 0.13 0.42 0.64 0.7
8 0.06 0.03 0.47 0.17 0.16 0.03 0.70 0.08 0.58 0.75 0.7
9 −0.04 0.03 0.47 0.17 0.16 0.03 0.70 0.08 0.58 0.75 0.7

10 −0.50 −0.25 0.60 0.10 0.20 −0.25 0.90 0.04 0.75 0.83 0.7
11 −0.39 −0.25 0.60 0.10 0.20 −0.25 0.90 0.04 0.75 0.83 0.7
12 −0.38 −0.25 0.60 0.10 0.20 −0.25 0.90 0.04 0.75 0.83 0.7

13 1.0 1.0 0.00 0.40 0.00 1.0 0.00 0.24 0.00 0.00 0.6

14 0.92 0.72 0.13 0.33 0.04 0.72 0.20 0.20 0.17 0.30 0.6
15 0.69 0.44 0.27 0.27 0.09 0.44 0.40 0.15 0.33 0.50 0.6
16 0.56 0.44 0.27 0.27 0.09 0.44 0.40 0.15 0.33 0.50 0.6
17 0.33 0.17 0.40 0.20 0.13 0.17 0.60 0.11 0.50 0.64 0.6
18 0.24 0.17 0.40 0.20 0.13 0.17 0.60 0.11 0.50 0.64 0.6
19 0.00 0.17 0.40 0.20 0.13 0.17 0.60 0.11 0.50 0.64 0.6
20 −0.22 −0.11 0.53 0.13 0.18 −0.11 0.80 0.06 0.67 0.75 0.6
21 −0.11 −0.11 0.53 0.13 0.18 −0.11 0.80 0.06 0.67 0.75 0.6
22 −0.21 −0.11 0.53 0.13 0.18 −0.11 0.80 0.06 0.67 0.75 0.6
23 −0.33 −0.11 0.53 0.13 0.18 −0.11 0.80 0.06 0.67 0.75 0.6
24 0.88 0.58 0.20 0.30 0.07 0.58 0.30 0.17 0.25 0.30 0.5
25 0.51 0.31 0.33 0.23 0.11 0.31 0.50 0.13 0.42 0.50 0.5
26 0.06 0.03 0.47 0.17 0.16 0.03 0.70 0.08 0.58 0.64 0.5
27 −0.04 0.03 0.47 0.17 0.16 0.03 0.70 0.08 0.58 0.64 0.5

28 0.33 0.17 0.40 0.20 0.13 0.17 0.60 0.11 0.50 0.50 0.4

The ensembles separated with lines are: (row 1) pattern of success, (row 13) identical classifiers, and
(row 28) pattern of failure.

Qav. The patterns of success and failure occur for values of Qav within the span of
possible values for this experiment.

The hypothetical independence point shows only mild improvement of about
0.05 on the individual accuracy p, much smaller than the improvement of 0.30
corresponding to the pattern of success. Note, however, that values of Qav = 0 are
associated with improvement of 0.10 and also with a decline of the performance
by 0.10. For the hypothetical independence point, all three pairwise Q are 0, that
is, Q1,2 = Q1,3 = Q2,3 = 0 while for the other points at the same Qav, the individual
diversities just add up to 0. This suggests that a single measure of diversity might not
be accurate enough to capture all the relevant diversities in the ensemble.
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A hypothetical ‘independence’ point

‘Pattern of success’
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FIGURE 8.5 Improvement on the individual accuracy (Pmaj − p) versus Qav.

The relationship patterns were not substantially different for the other measures.
To populate the scatterplots with points, we repeated the simulation but took N = 30
objects (L = 3 classifiers, each of accuracy p = 0.6), which gave a total of 563
ensembles. Figure 8.6 shows the scatterplots of the improvement versus diversity for
the 10 measures. As the figure shows, diversity and accuracy are not strongly related.

So far, we assumed that all distributions of the classifier votes are equally likely.
The picture is quite different if we assume approximately equal pairwise dependencies
Qi,j. To illustrate this, we generated 300 ensembles with L = 3 classifiers and 300
with L = 5 classifiers. The pairwise accuracies within each ensemble were kept
approximately equal. Let Pmax(i) be the observed maximum individual accuracy
of ensemble i, Pmaj(i) be the majority vote accuracy, and Qav(i) be the average
diversity Q. The ensembles were generated in such a way that all Qk,s, k, s = 1,… , L,
k ≠ s were approximately the same for each ensemble, hence approximately equal to
Qav(i). The relationship between Qav and Pmaj − Pmax is illustrated in Figure 8.7.
Each point in the scatterplot corresponds to a classifier ensemble.

This time the relationship between diversity and improvement over the single
best ensemble member is clearly visible. Smaller Q (more diverse classifiers) leads to
higher improvement over the single best classifier. Negative Q (negative dependency)
is better than independence (Q = 0) as it leads to an even bigger improvement.
The zero improvement is marked with a horizontal line in the figure. The points
below the line correspond to classifier ensembles that fared worse than the single
best classifier. In all these cases, the ensembles consist of positively related but not
identical classifiers.
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FIGURE 8.6 Improvement on the individual accuracy (Pmaj − p) versus the 10 diversity
measures for data size N = 30 and individual accuracy p = 0.6. The dashed line at Pmaj − p = 0
separates the zones of improvement and deterioration.

If we do not enforce diversity, the ensemble is most likely to appear as a dot toward
the right side of the graph. For such ensembles, the improvement on the individually
best accuracy is usually negligible. The pronounced relationship in Figure 8.7 was
obtained under quite artificial circumstances. When the members of the ensemble
have different accuracies and different pairwise diversities, such a relationship does
not exist.
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FIGURE 8.7 Plot of (Pmaj − Pmax) versus Qav for L = 3 and L = 5 classifiers with accuracy
p = 0.6 and approximately equal pairwise Q.

Recall the “pattern of success” and “pattern of failure” for the majority vote
combiner, discussed earlier. The arguments and examples here reinforce the finding
that independence is not necessarily the best scenario for combining classifiers [87,
240]. “Negatively dependent” classifiers may offer an improvement over independent
classifiers. While this result has been primarily related to majority voting [292], the
same holds for other combiners, for example, Naı̈ve Bayes [16].

8.3.3 A Caveat: Independent Outputs ≠ Independent Errors

It is important to have a clear understanding of terminology. When we talk about
independent classifiers, we often assume independence of the classification errors
committed by the classifiers. The problem is that the classifier outputs may be inde-
pendent while the errors are not [404]. In most cases in this book, it is clear from the
context that we use the oracle output which takes value 1 if the object is correctly
recognized, and 0 otherwise. Then “classification error,” “classifier output,” and sim-
ply “classifier” become synonyms for the purposes of diversity evaluation, and the
concept of independence applies to all.

However, if the outputs are class labels (not the oracle), it is possible to find a
counterexample where the majority vote of independent classifiers has higher error
than any of the individual classifiers. Taking Vardeman and Morris’s counterexample
[404] as a guide, below we generate one of our own (the MATLAB code is provided
in Appendix 8.A.3).

Consider three classifiers, D1, D2, and D3 with independent outputs for a two-class
problem. Just for fun, let us name the classes after two whimsical characters: Bart
Simpson and Lisa Simpson.2 Suppose that each classifier output is a random variable

2Cited with gratitude: The Simpsons LaTEX font by Raymond Chen (rjc@math.princeton.edu)

mailto:rjc@math.princeton.edu


RELATIONSHIP BETWEEN DIVERSITY AND ACCURACY 263

TABLE 8.5 Classifier Outputs (D1, D2, D3) and Probability Mass Functions (p = 0.8)

Outputs

D1 D2 D3 P(y1, y2, y3) MV BL

L L L (1 − p)3 0.008 0.008 0.000 L L
L L B (1 − p)2p 0.032 0.001 0.031 L B
L B L (1 − p)2p 0.032 0.001 0.031 L B
L B B (1 − p)p2 0.128 0.127 0.001 B L
B L L (1 − p)2p 0.032 0.001 0.031 L B
B L B (1 − p)p2 0.128 0.127 0.001 B L
B B L (1 − p)p2 0.128 0.127 0.001 B L
B B B p3 0.512 0.000 0.512 B B

Notes: MV = majority vote labels; BL = Bayes (optimal) labels

= P(Lisa, y1, y2, y3) = P(Bart, y1, y2, y3).

yi ∈ {Bart, Lisa}, i = 1, 2, 3, following a Bernoulli distribution with probability p for
class Bart. Taking the three variables as independent outcomes of an experiment, we
create a binomial distribution with parameters n = 3 and probability of success p.
The classifier outputs and the pmf of the joint distribution P(y1, y2, y3) are shown in
Table 8.5.

Take for example output LBL. The probability that the three (independent) classi-
fiers will come up with this output is (1 − p)p(1 − p) = (1 − p)2p = 0.032. It is up to
us now how to split this probability into P(Lisa, LBL) and P(Bart, LBL) so that the
two sum up to 0.032. The majority vote (MV) label for this combination of outputs
will be Lisa. To make the matter as bad as possible for the majority vote (as we are
constructing a counterexample), we can assign a tiny amount to P(Lisa, LBL) and
the rest of the probability to P(Bart, LBL). In this example, the “tiny amount” was
set to 0.001, but this can be any sufficiently small constant (tunable in the MATLAB
code). Then the Bayes class label for the LBL combination will be Bart, as this class
has a higher joint probability.

Applying the same destructive approach to all nonunanimous outputs, majority
vote will be wrong for six out of the eight possible combinations, and correct only for
LLL and BBB. Therefore, the majority vote error will be the sum of the maximum
of P(Lisa, .) and P(Bart, .) for the six nonunanimous combinations

PMV = 0.031 + 0.031 + 0.127 + 0.031 + 0.127 + 0.127 = 0.474.

The individual classifiers have identical error rates. For D1, for example, the first four
labels are L, therefore the respective error probabilities will be taken from the Bart
column, and the remaining four (label B), from the Lisa column

Pind = 0 + 0.031 + 0.031 + 0.001 + 0.001 + 0.127 + 0.127 + 0 = 0.318.
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TABLE 8.6 Classifier Outputs (D1, D2) and Classification Errors

Probability for the oracle output

D1 D2 11 10 01 00

L L 0.008 0.000 0.08 0 0 0
L L 0.001 0.031 0.001 0 0 0.031
L B 0.001 0.031 0 0.001 0.031 0
L B 0.127 0.001 0 0.127 0.001 0
B L 0.001 0.031 0 0.031 0.001 0
B L 0.127 0.001 0 0.001 0.127 0
B B 0.127 0.001 0.001 0 0 0.127
B B 0.000 0.512 0.512 0 0 0

0.522 0.160 0.160 0.158

Finally, the Bayes error for the example is the sum of the minima of the two columns

PB = 6 × 0.001 = 0.006.

We can add to this calculation the error of the largest prior classifier, that is, the
classifier which assigns all objects to the most probable class. The probability of
the two classes are obtained as the sum of columns Lisa and Bart, respectively, so
P(Lisa) = 0.392 and P(Bart) = 0.608. The error of the largest prior classifier will be
PLP = 0.392.

Thus far, the example showed that combining independent classifier outputs
increased the majority vote error dramatically, outreaching even the error of the
largest prior classifier. Why did this happen? Consider now the classification errors
of the individual classifiers. Since the problem is completely symmetric, it will suffice
to show error dependency between D1 and D2. The error patterns of the two classifiers
(oracle outputs) are shown in Table 8.6. Symbol 1 in the title row indicates correct
classification, and 0 indicates an error.

For example, column number 6 in the table has a header 10. In this column, we
list the probabilities of the events where D1 is correct and D2 is wrong. The top two
and the bottom two entries in this column are 0s because both the classifiers give the
same label. In row 3 of column “10,” the probability is 0.001. This is the probability
of class Lisa because D1 gives label L (the correct one) and D2 gives label B (the
wrong one). The rest of the table is filled in the same way. The bottom row of the table
is the sum of the columns, and gives the total probabilities for a 2 × 2 contingency
table. Using Equation 8.2, the correlation between the two oracle outputs (correlation
between the classification errors) is

𝜌 = 0.522 × 0.158 − 0.16 × 0.16√
(0.522 + 0.16)(0.16 + 0.158)(0.522 + 0.16)(0.16 + 0.158)

= 0.2623. (8.32)
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P = ensemble accuracy
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FIGURE 8.8 Four vote distributions for classifiers A, B, and C: independent classifiers,
identical classifiers, and two dependency patterns.

It is clear now that, although the classifier outputs are independent, their errors are
not. The example was tailored to disadvantage the majority vote thereby serving as
a warning that imprecise terminology may lead to confusion and spawn ill-grounded
research.

8.3.4 Independence Is Not the Best Scenario

The prevailing opinion is that we should strive to train classifiers so that they produce
independent errors. In fact, independence is not the best scenario. To illustrate this,
consider three classifiers and a data set of 15 objects. Each classifier labels correctly
10 of the 15 objects, hence the individual accuracy is 0.667. Figure 8.8 shows four
vote distributions for the three classifiers: independent classifiers, identical classifiers,
and two dependency patterns.

While the independent outputs improve on the individual accuracy, dependency
may greatly improve or destroy the majority vote result. This brings the question
about “good” diversity and “bad” diversity [54]. Good diversity helps to achieve
correct majority with the minimum number of votes while bad diversity wastes the
maximum number of correct votes without reaching majority.

Take, for example, an object and the possible distribution of votes of an ensemble
of seven classifiers. Denoting a correct vote by 1 and an incorrect vote by 0, the
two trivial nondiverse ensembles give votes [1111111] and [0000000]. The largest
diversity with respect to this single object is obtained for the smallest possible voting
margin of 1∕7. The two ensemble outputs with the largest diversity are [1111000]
and [1110000]. The first of these outputs leads to the correct majority vote, hence the
large diversity is welcome. The latter output wastes three correct votes on a wrong
decision, which makes the large diversity a drawback.
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FIGURE 8.9 300 ensembles of L = 7 classifiers in each one. The oracle outputs were
generated independently, with probability of classification error as indicated. The gray-level
intensity signifies the majority vote error. Lighter color corresponds to larger error.

Brown and Kuncheva [54] propose a decomposition of the majority vote which
includes terms for good and bad diversities

Emaj = (1 − p̄) − 1
NL

∑
li≥

L+1
2

(L − li)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

good diversity

+ 1
NL

∑
li<

L+1
2

li,

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

bad diversity

(8.33)

where N is the number of objects in data set Z, li is the number of correct votes
for object zi ∈ Z, L is the ensemble size, and p̄ is the average individual accuracy.
The equation shows that good diversity decreases the error whereas bad diversity
adds to it. Figure 8.9 shows a scatterplot of 300 ensembles of seven classifiers in
the space of good and bad diversity. Each cloud contains 100 points. The outputs
were generated independently, where each output bit was set to 0 (error) with the
probability displayed above the respective cloud (the average individual error, 1 − p̄).
The gray level intensity signifies the majority vote error. Lighter color corresponds
to larger error.

Interestingly, while there is a small variation within each cloud, the major factor
for improving the ensemble error seems to be the reduction of bad diversity. The
good diversity is nearly constant. The minimum and maximum ensemble errors for
the three values of the individual error were

Individual Minimum Emaj Maximum Emaj

0.30 0.096 0.148
0.35 0.173 0.235
0.40 0.261 0.327
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8.3.5 Diversity and Ensemble Margins

Several authors have spotted and explored the link between ensemble diversity and
the ensemble margins [376,379,415]. Stapenhurst [376] offers a comprehensive and
insightful review of the state of the art, and proposes a unified viewpoint for diversity
measures.

Consider an ensemble of L classifiers whose diversity is estimated on a data set
Z = {z1,… , zN} of N objects. Let li be the number of classifiers in the ensemble
which gives a correct label for zi, i = 1,… , N. Since the total number of correct votes
is
∑N

i=1 li, the average individual accuracy of the ensemble members is

p̄ = 1
LN

N∑
i=1

li. (8.34)

The voting margin of the ensemble for object zi is

mi =
li − (L − li)

L
=

2li − L

L
. (8.35)

The mean margin is

m = 1
N

N∑
i=1

mi =
1

NL

N∑
i=1

2li − L = 2p̄ − 1. (8.36)

Since the minimum margin is always smaller than or equal to the mean margin, for
a fixed p̄, it reaches maximum when all mi are identical and equal to 2p̄ − 1. For this
to hold,

mi = 2p̄ − 1 =
2li − L

L
, (8.37)

hence the maximum of the minimal margin is achieved when

li = Lp̄. (8.38)

Tang et al. [379] proved this relationship and named the case when all training
objects are classified correctly by the same number of base classifiers the uniformity
condition. The above value of li maximizes not only the margin but also various
diversity measures, alluding to a possible link between ensemble margin and
diversity. Tang et al. [379] derived expressions for six diversity measures in terms
of li. To illustrate this derivation, here we reproduce the result for the disagreement
measure (8.7).

For object zi, there are li correct classifiers and L − li incorrect ones. Therefore,
the number of pairs of classifiers that will disagree for this object is li(L − li).
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Averaging across all N objects and scaling for all pairs of classifiers, the disagreement
measure is3

D = 2
NL(L − 1)

N∑
i=1

li(L − li) =
2L

L − 1
p̄ − 2

NL(L − 1)

N∑
i=1

l2i . (8.39)

To maximize D with respect to a single li, take the derivative and set it to zero.
In addition, we must enforce Equation (8.34), which is done through the Lagrange
multiplier

𝜕

𝜕li

(
2L

L − 1
p̄ − 2

NL(L − 1)

N∑
i=1

l2i + 𝜆

(
p̄ − 1

LN

N∑
i=1

li

))
(8.40)

= −
4li

NL(L − 1)
− 𝜆

LN
= 0. (8.41)

Solving for li,

li = −𝜆(L − 1)
4

. (8.42)

Substituting in the constraint (8.34) and solving for 𝜆,

p̄ = 1
LN

N∑
i=1

−𝜆(L − 1)
4

(8.43)

𝜆 = −
4Lp̄

L − 1
. (8.44)

Returning 𝜆 in Equation (8.42), we arrive at li which maximizes the disagreement
diversity measure

li = Lp̄. (8.45)

The second derivative of D with the Lagrangian multiplier is negative, therefore the
expression for li corresponds to a maximum. Tang et al. [379] prove this relationship
for five more diversity measures: double fault, KW, kappa, generalized diversity, and
difficulty. They further observe that, unlike maximizing the classification margins,
maximizing diversity does not bring the desired improvement of the generalization

3The discrepancy with the results in reference [379] is due to different notation. To keep consistency, here
we denoted by li the number of correct votes, while in their notation li is the number of wrong votes. The
theoretical results are identical.
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TABLE 8.7 Some Diversity Measures Expressed in Terms of the Voting Margin [376]

Measure Expression

Disagreement D = L
2(L − 1)

(1 − m2) (8.46)

Double fault DF = 1
2

(1 − m) − L
4(L − 1)

(1 − m2) (8.47)

KW variance KW = 1
4

(1 − m2) (8.48)

Entropy E = L
L − 1

(1 − |m|) (8.49)

Difficulty 𝜃 = 1
4

(m2 − m2) (8.50)

Nonpairwise 𝜅 𝜅 = 1 − L
L − 1

(
1 − m2

1 − m2

)
(8.51)

GD GD = L
L − 1

(
1 − m2

2(1 − m)

)
(8.52)

CFD CFD = L
L − 1

⎛⎜⎜⎜⎝1 − 1 − m

2
(

1 − 1

N

∑N
i=1 𝛿[mi = 1]

)⎞⎟⎟⎟⎠ (8.53)

accuracy. Their conclusions are that

� For a given p̄, the uniformity condition is usually not achievable.
� In the general case, when the uniformity condition does not hold, the minimum

margin of an ensemble is not strongly related to diversity.

Leaving the minimum margin aside, and taking diversity–margin correspondence
further, Stapenhurst [376] shows that most diversity measures can be expressed as
functions of some form of the average ensemble margin. Some of these measures are
shown in Table 8.7. The notations are as follows:

� m ∈ [−1, 1] average margin as in Equation (8.36).
� |m| ∈ [0, 1] average absolute margin.
� m2 ∈ [0, 1] average squared margin.

To illustrate the derivation of the expressions in Table 8.7, here we continue the
example with the disagreement measure. Expressing li from Equation (8.37),

li =
L(mi + 1)

2
. (8.54)
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Substituting in Equation (8.39), we have

D = 2
NL(L − 1)

N∑
i=1

li(L − li) (8.55)

= 2
NL(L − 1)

N∑
i=1

L(mi + 1)

2

(
L −

L(mi + 1)

2

)
(8.56)

= L
2(L − 1)

(1 − m2), (8.57)

which is the value in the table.
Stapenhurst [376] disputes Tang’s hypothesis that high diversity is related to large

minimum margin. He observes instead that for a fixed value of the training ensemble
accuracy, diversity is more often harmful than beneficial. Looking at the expression
of the diversity measures through the voting margin, it is clear that the symmetric
measures include the absolute or the squared margin, whose sign does not distinguish
between correct and wrong labels. The margin is involved in such a way that the
smallest margin corresponds to the largest diversity. Thus, in order to have high
diversity, we must have small voting margins. This is the case with the patterns of
success and failure, both of which are designed to make use of very small margins
(high diversity). Given that this high diversity may lead to a superb ensemble or a
disastrous one, if we were to choose an ensemble by maximizing diversity, the results
may be unpredictable. We may increase the good and the bad diversity in a different
(unknown) proportion. This goes some way to explain the disappointing results in
numerous studies where diversity was used explicitly to select the ensemble from a
pool of classifiers.

Nonsymmetric measures such as double fault, CFD, and GD include the average
margin with its sign, and this brings them closer to the ensemble accuracy. But the
question remains whether we want a proxy for the ensemble accuracy in addition to
the estimate that we can calculate from the training data anyway.

8.4 USING DIVERSITY

8.4.1 Diversity for Finding Bounds and Theoretical Relationships

Assume that classifier outputs are estimates of the posterior probabilities, P̂i(𝜔s|x),
s = 1,… , c, i = 1,… , L, so that the estimate P̂i(𝜔s|x) satisfies

P̂i(𝜔s|x) = P(𝜔s|x) + 𝜂
i
s(x), (8.58)

where 𝜂i
s(x) is the error for class 𝜔s made by classifier Di. The outputs for each class

are combined by averaging, or by an order statistic such as minimum, maximum, or
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median. Tumer and Ghosh [394] derive an expression about the added classification
error (the error above the Bayes error) of the ensemble under a set of assumptions

Eave
add = Eadd

(
1 + 𝛿(L − 1)

L

)
, (8.59)

where Eadd is the added error of the individual classifiers (all have the same error),
and 𝛿 is a correlation coefficient (the measure of diversity of the ensemble).4 Breiman
[50] derives an upper bound on the generalization error of random forests using the
averaged pairwise correlation, which also demonstrates that lower correlation leads
to better ensembles.

8.4.2 Kappa-error Diagrams and Ensemble Maps

8.4.2.1 Kappa-Error Diagrams Margineantu and Dietterich suggest the kappa-
error plots [271]. Every pair of classifiers is plotted as a dot in a two-dimensional
space. The pairwise measure kappa (8.4) is used as the x-coordinate of the point
and the average of the individual training errors of the two classifiers is used as the
y-coordinate. Thus, for an ensemble of L classifiers, there are L(L − 1)∕2 points in
the scatterplot. The best pairs are situated in the left bottom part of the plot: they have
low error and low kappa (low agreement = high diversity).

◻◼ Example 8.2 Kappa-error plot of four ensemble methods
Figure 8.10 shows the kappa-error diagram for four ensemble methods: AdaBoost,
bagging, random forest, and rotation forest applied to the UCI letters data set. A
random half of the data set was used for training and the other half, for testing. The
base classifier was a decision tree and the ensemble size was L = 25, generating 300
points of classifier pairs in each ensemble cloud. The testing ensemble errors are
shown in the caption of the figure.

AdaBoost appears to be the best ensemble in this example. Its cloud of points shows
that diversity pays off. The two ensembles with more accurate individual classifiers but
higher kappa (less diversity)—bagging and rotation forest—have larger testing error.
The rotation forest cloud of points lies slightly lower and to the left of the bagging
cloud, which indicates lower individual error and marginally higher diversity. This
combination results in a smaller testing error compared to that of bagging.

Desirable as it may be, the exact left bottom corner at (−1, 0) is not achievable. Clas-
sifiers that are ideally accurate will be identical, therefore 𝜅 = 1. For each ensemble,
a compromise between diversity and individual accuracy must be negotiated. The
clouds corresponding to different ensembles, plotted on the same diagram, usually
form a “belly” whereby ensembles with higher diversity have members with higher
individual errors and vice versa. It is curious to find out why this belly-shaped pattern

4Averaged pairwise correlations between Pi(𝜔s|x) and Pj(𝜔s|x), i, j = 1,… , L are calculated for every s,

then weighted by the prior probabilities P̂(𝜔s) and summed.
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FIGURE 8.10 A kappa-error diagram of four ensemble methods for the letter data set.
Testing errors: AdaBoost 5.76%, bagging 9.46%, random forest 9.26%, and rotation forest
8.47%.

exists, and how close a pair of classifiers can be to the bottom left corner of the dia-
gram. The following lower bound relating 𝜅 (Equation 8.6) and the average pairwise
error e can be proved [243] (the derivation is shown in Appendix 8.A.4)

𝜅min =

{
1 − 1

1−e
, if 0 < e ≤ 0.5

1 − 1
e
, if 0.5 < e < 1.

(8.60)

The bound is tight. It is achievable for a pair of classifiers if they have the same
individual error rate e < 0.5 and make no simultaneous errors. The bound is plotted
in Figure 8.11a. The upper branch (e > 0.5), plotted with a dashed line, is of less
interest because it corresponds to individual error for the pair of classifiers e > 0.5.
The lower branch (e ≤ 0.5) is the “target” part of the bound, where better ensembles
are expected to be found. Figure 8.11a shows 20,000 simulated classifier pairs. The
number of data points was fixed at N = 200 for each contingency table. The N points
were randomly split to fill in the a, b, c, and d values in the contingency table. Each
classifier pair is a point on the plot, where the coordinates 𝜅 and e are calculated as
in Equations 8.A.32 and 8.A.33.

The bound itself is not directly related to the ensemble performance. It is expected
that ensembles that have classifier pairs closer to the bound will fare better than
ensembles that are far away.

Next we generated randomly 1000 ensembles of L = 3 classifiers. Each ensemble
was a three-way contingency table with eight entries: N000, N001,… , N111. The value
Nxxx is the number of data points that have been classified correctly (x = 1) or wrongly
(x = 0) by classifiers 1, 2, and 3, respectively. For example, N011 is the number of
points classified correctly by classifiers 2 and 3 and misclassified by classifier 1.
The integers Nxxx were generated randomly so that

∑
xxx Nxxx = N. The majority vote
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FIGURE 8.11 Illustration of the bound of the kappa-error diagram. (a) 20,000 pairs of
classifiers; (b) ensembles of three classifiers, where larger marker indicates higher accuracy.

accuracy can be calculated from the three-way contingency table as

Pmaj =
1
N

(N110 + N101 + N011 + N111). (8.61)

Figure 8.11b illustrates the random ensembles. Each ensemble is depicted as a
triangle where the three classifier pairs in the ensemble (points) are connected with
lines. In the geometric center of each triangle, a black dot is plotted to indicate
the center of the ensemble “cloud.” The size of the dot is a gauge of the ensemble
accuracy. Ensembles with higher majority vote accuracy are shown with larger dots. A
tendency can be observed: ensembles that have more accurate individual classifiers
(the triangle is lower down on the y-axis) are better. This tendency is mirrored in
the experiments with real data and with ensembles of size L = 1000, shown later.
Interestingly, diversity does not play as big a role as might be expected. The size of
the points increases slightly to the left (toward smaller 𝜅, hence large diversity) but
the error-related tendency is much more pronounced. This suggests that in order to
create small ensembles with high majority vote accuracy, we should strive to obtain
accurate individual classifiers and be less concerned about their diversity. We note
that, while the bound on the diagram is valid for any ensemble method, Figure 8.11
gives insights only about the majority vote of ensembles of three classifiers.

Looking for a general pattern across ensemble methods and data sets (however
inappropriate such an approach might be), we put together an experiment with 31 UCI
data sets and 5 ensemble methods: bagging, AdaBoost, random subspace, random
forest, and rotation forest. Each ensemble consisted of 1000 linear classifiers, thereby
generating a cloud of 499,500 points on the kappa-error diagram. The number of such
clouds is 31 (data sets) × 5 (ensemble methods) = 155. Figure 8.12 shows the kappa-
error plot and the derived bound [243]. The ensemble accuracy is indicated by color.
Lighter color signifies lower accuracy.



274 DIVERSITY IN CLASSIFIER ENSEMBLES

0.5

0.4

0.3

0.2

0.1

0
–1 –0.5 0

A
ve

ra
ge

 p
ai

rw
is

e 
er

ro
r

κ
0.5 1

FIGURE 8.12 Kappa-error diagram for 31 data sets and 5 ensemble methods (L = 1000).
Lighter color signifies lower accuracy.

The plot demonstrates several general tendencies:

� Ensemble accuracy is higher (darker color) for clouds closer to the bound.
� The darker color toward the bottom right corner confirms the result observed

in the simulations: the individual accuracy is the dominant factor for better
ensemble accuracy.

� There is feasible unoccupied space in the diagram, closer to the boundary, where
ensembles of higher accuracy may be engineered.

The bound helps by giving additional insight about the extent of theoretically
possible improvement of the ensemble members. It does not however prescribe the
way of creating these classifiers.

8.4.2.2 Ensemble Maps Diversity measures have been used to find out what
is happening within the ensemble. Pȩkalska and coauthors [306] look at a two-
dimensional plot derived from the matrix of pairwise diversity. Each classifier is
plotted as a dot in the two-dimensional space found by Sammon mapping which
preserves the distances between the objects. Each point in the plot represents a
classifier and the distances correspond to pairwise diversities. The ensemble is a
classifier itself and can also be plotted. Any method of combination of the individual
outputs can also be mapped. Even more, the true-label “classifier” can be plotted as
a point to complete the picture.

◻◼ Example 8.3 Ensemble map
The two-dimensional fish data was used again so that we can match visually the
classifier decision boundaries to the classifiers’ representations in the ensemble map.
Figure 8.13a shows the classification boundaries of seven classifiers forming the
ensemble. Each classifier was trained on 10 points sampled at random from the
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FIGURE 8.13 Classification boundaries and an ensemble map for seven linear classifiers.

2500 labeled grid points. The classifiers are numbered from 1 to 7. The ensemble
classification region for class “fish” (black dots) is shaded.

Figure 8.13b shows the ensemble map calculated from the disagreement measure
D, using nonmetric multidimensional scaling.5 Each individual classifier is shown
with its number. We used the pairwise disagreement matrix as the entry to the scaling
function. Before we calculated the disagreement matrix, we added two more columns
to the matrix with the oracle outputs of the individual classifiers: the ensemble oracle
output, and a column with 1s representing the ideal classifier which recognizes all
objects correctly.

Although a truthful picture of the classifier dependencies is not guaranteed by any
means, the scatterplot in Figure 8.13b matches to some degree the appearances in
Figure 8.13a. Classifiers 1 and 3 have close boundaries and appear fairly close in
Figure 8.13b. The same holds for classifiers 2, 4, and 7. Closest to the ensemble are
classifiers 1 and 7, whose boundaries are not far from the ensemble’s one. The seven
individual errors (in %) were: (1) 30.12, (2) 35.96, (3) 33.68, (4) 36.12, (5) 34.16,
(6) 33.36, (7) 33.16. The ensemble error was 28.40%. Of the individual classifiers,
classifier 1 is closest to the “true labels” point (the ideal classifier). The proximity to
the ideal classifier on the plot cannot be associated directly with the classification error
but some weaker association exists. Classifiers 2 and 4 have the largest individual
error, and appear farthest from “true labels”. On the other hand, 1 and ensemble have
the lowest error and are closest to true labels. More interestingly, the ensemble point
is amidst points 1–7, indicating its relationship with all ensemble members.

8.4.3 Overproduce and Select

Bigger ensembles are not necessarily better ensembles. It has been reported that small
ensembles may be just as good [64,181]. Then it stands to reason to select an ensemble
from a pool of classifiers trained with the chosen diversifying heuristics. Originally,

5MATLAB function mdscale was used.
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diversity was considered a highly desirable criterion, and was incorporated explicitly
within such selection methods [6, 25, 94, 154, 155, 271, 336, 361, 431]. It transpired,
however, that diversity was not as useful as hoped. Regardless of the doubts and the
limited initial success, the overproduce-and-select approach, also called “ensemble
pruning,” is flourishing [270, 273, 279, 300, 301, 333, 436]. This subject is discussed
in detail in the recent monographs by Zhou [439] and Rokach [335] and will be only
briefly illustrated here.

Selection of ensemble members can be thought of as feature selection in the
intermediate feature space, where the classifier outputs are the new features. Therefore
the same old questions apply:

1. How do we choose the criterion for evaluating an ensemble?

2. How do we traverse the possible candidate subsets?

Several criteria have been explored, some of which explicitly include diversity. But
the real wealth of ingenious ideas comes from answering the second question. The
methods there range from ranking and cutting the list, forward and backward sequen-
tial search, to clustering and electing prototypes, genetic algorithms and analytical
optimization. Whatever the answers to the two questions are, one of the most impor-
tant factors for the success of ensemble pruning is the availability of validation data.

Without a particular reason, apart from simplicity, we chose to illustrate the
following ensemble pruning methods.

� Random order. Evaluate ensembles of increasing size from 1 to L, adding one
classifier at a time, randomly chosen from the pool of trained classifiers. Return
the ensemble with the minimum error on the validation set.

� Best first. Sort the individual classifiers based on their training error, starting
with the best classifier. Evaluate ensembles of increasing size from 1 to L,
adding one classifier from the sorted list at a time. Return the ensemble with the
minimum error on the validation set.

� Sequential forward selection (SFS). Start with the best classifier and add one
classifier at a time until all classifiers are included. The classifier to add is
chosen from among the remaining classifiers by checking separately each one
as an addition to the current ensemble. The classifier which leads to the smallest
ensemble error on the validation set is chosen to augment the ensemble. Return
the ensemble with the minimum error on the validation set.

� Kappa-error convex hull pruning [94, 271]. In kappa-error diagrams, the most
desirable pairs of classifiers are situated toward the lower left corner of the plot.
Then we can use the convex hull of the ensemble cloud [271] and select only
the classifiers within.

� Pareto pruning. The ensemble consists of all classifiers which define the Pareto
frontier. Figure 8.14 shows the Pareto frontier and the convex hull for an ensem-
ble cloud in a kappa-error diagram. The calculation of the Pareto frontier is
explained in Appendix 8.A.5. MATLAB code is also given.
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FIGURE 8.14 An example of the convex hull and Pareto frontier of an ensemble cloud in a
kappa-error diagram.

We used the fish data set and the rotated checker board data. Fifty Naı̈ve Bayes
classifiers were trained on small random subsamples of the training set. The combi-
nation method was BKS, as explained in Chapter 4. The procedure was repeated 50
times, and the training, validation, and testing errors were averaged across the repe-
titions. Figure 8.15a shows the testing errors for the fish data set, and Figure 8.15b,
for the checker board data set.

Each of the 50 runs returns a value for the ensemble size and the corresponding
testing error for all methods. Figures 8.16 and 8.17 show the average ensemble size
and testing error for the five overproduce-and-select methods. Ellipses at one standard
deviation are also plotted.
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FIGURE 8.15 Averaged testing errors from 50 runs of the five overproduce-and-select
methods.
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FIGURE 8.16 Results with the fish data. Ensemble size and testing error for the five
overproduce-and-select methods, averaged across 50 runs. The ellipses mark one standard
deviation of the points from the mean.

It can be seen that, for this combination of data and experimental protocol, the best
selection method is the forward search, whose criterion is the validation ensemble
error (the lowest positioned ellipse). However, the improvement over the random order
ensemble is disappointingly small. The two methods based on diversity and individual
accuracy, Pareto selection and convex hull selection, identify smaller ensembles but
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FIGURE 8.17 Results with the rotated checker board data. Ensemble size and testing error
for the five overproduce-and-select methods, averaged across 50 runs. The ellipses mark one
standard deviation of the points from the mean.
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with a larger error. This observation is in tune with the general consensus that the
selection criterion should be predominantly based on some estimate of the ensemble
error with less contribution from diversity, if any.

8.5 CONCLUSIONS: DIVERSITY OF DIVERSITY

Diversity is an intuitive rather than a precise concept, which is why there are so many
measures and definitions. It must be clear what we intend to measure. Consider the
following three views.

1. Diversity as a characteristic of the set of classifiers. We have a set of classifiers
and we have not decided yet which combiner to use. Also, we do not involve
information about whether or not the classifier votes are correct. This view
seems to be the “cleanest.” It would provide information in addition to the
individual error rates and the ensemble error rate. In a way, we measure diversity
to discover whether it contributes to the success of the ensemble.

2. Diversity as a characteristic of the set of classifiers and the combiner. In
this case the ensemble output is also available. Thus, we can find out which
classifier deviates the most, and which deviates the least from the ensemble
output. “Individual” diversity can be gauged on this basis. Different combiners
might lead to different diversity values for the same set of classifiers.

3. Diversity as a characteristic of the set of classifiers, the combiner, and the
errors. Here we can also use the oracle information available.

The latter is the most useful perspective because it can be related to the ensemble
error, and is the basis of the diversity measures introduced and discussed in this
chapter.

Diversity has been intensively studied, and several general frameworks and unify-
ing viewpoints have been proposed [56]. Among these are the information-theoretic
framework [52, 440] and the voting margin framework [376, 380]. Compared to
10 years ago, we now have a deeper understanding of ensemble diversity. Below we
list five statements which have acquired somewhat axiomatic importance.

1. Diversity is important.

2. There are many (too many?) ways to measure diversity, and no general consen-
sus on a single measure. Some studies on diversity attempt to create measures
which relate diversity to the ensemble accuracy. Lucrative as this pursuit is, the
more we involve the ensemble performance into defining diversity, the more
we are running onto the risk of replacing a simple calculation of the ensem-
ble error by a clumsy proxy which we call diversity. Interpretability of the
measure as diversity might be lost on the way to trying to tie it up with the
ensemble error.

3. Diversity and independence are not synonyms.
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4. Diversity may be beneficial or detrimental.

5. So far, explicit inclusion of diversity in ensemble creation/selection has had
limited success but ensemble methods which intuitively or heuristically increase
diversity fare very well.

APPENDIX

8.A.1 DERIVATION OF DIVERSITY MEASURES FOR ORACLE
OUTPUTS

8.A.1.1 Correlation 𝝆

Table 8.1 containing the relationship between the oracle outputs of two classifiers is
reproduced below for easier reference:

Dj correct (1) Dj wrong (0)

Di correct (1) a b
Di wrong (0) c d

Total, a + b + c + d = 1

Consider the two classifier outputs to be binary random variables X for Di and Y
for Dj. In terms of covariance (Cov) and variance (Var), the correlation between X
and Y is

𝜌 = Cov(X, Y)√
Var(X)

√
Var(Y)

.

Then

𝜌 =
∑

x,y(x − x̄)(y − ȳ)P(x, y)√∑
x(x − x̄)2Px(x)

√∑
y(y − ȳ)2Py(y)

, (8.A.1)

where

� x, y ∈ {0, 1},
� P(x, y) is the pmf for the pair of values (x, y),
� x̄, ȳ are the respective expectations, and
� Px and Py are the marginal distributions for X and Y , respectively.

The space jointly spanned by X and Y is {0, 1} × {0, 1}, and the joint probabilities
are the table entries. Then

x̄ = 1 × (a + b) + 0 × (c + d) = a + b (8.A.2)

ȳ = 1 × (a + c) + 0 × (b + d) = a + c. (8.A.3)
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The numerator of 𝜌 is

Cov(X, Y) = (1 − (a + b))(1 − (a + c))a + (1 − (a + b))(0 − (a + c))b

+ (0 − (a + b))(1 − (a + c))c + (0 − (a + b))(0 − (a + c))d

= (c + d)(b + d)a − (c + d)(a + c)b

− (a + b)(b + d)c + (a + b)(a + c)d

= (c + d)(ab + ad − ab − bc) + (a + b)(ad + cd − bc − cd)

= (c + d)(ad − bc) + (a + b)(ad − bc)

= (a + b + c + d)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1

(ad − bc) = ad − bc.

Further on,

Var(X) = (1 − (a + b))2(a + b) + (0 − (a + b))2(c + d)

= (c + d)2(a + b) + (a + b)2(c + d)

= (c + d)(a + b)(a + b + c + d) = (a + b)(c + d),

and

Var(Y) = (1 − (a + c))2(a + c) + (0 − (a + c))2(b + d)

= (b + d)2(a + c) + (a + c)2(b + d)

= (b + d)(a + c)(a + b + c + d) = (a + c)(b + d).

Assembling the numerator and the denominator, we arrive at

𝜌 = ad − bc√
(a + b)(c + d)(a + c)(b + d)

. (8.A.4)

8.A.1.2 Interrater Agreement 𝜿

Again denote the binary random variables associated with the two classifier outputs
by X and Y , respectively. The calculation of the pairwise 𝜅 follows the equation

𝜅 =
Observed agreement – ABC

1 − ABC
,

where ABC stands for agreement by chance. The observed agreement is the proba-
bility that both classifiers produce identical outputs (both correct or both incorrect).
Using again Table 8.1, the observed agreement is

Observed agreement = a + d. (8.A.5)
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For ABC, we must calculate the probability of identical outputs assuming that X
and Y are independent. The probability for X = 1 and Y = 1 is calculated from the
marginal pmfs as

Px(X = 1)Py(Y = 1) = (a + b)(a + c),

and the probability for X = 0 and Y = 0 is

Px(X = 0)Py(Y = 0) = (c + d)(b + d).

Then

ABC = (a + b)(a + c) + (c + d)(b + d).

The numerator of 𝜅 becomes

Nu = a + d − (a + b)(a + c) − (c + d)(b + d) (8.A.6)

= a + d − a2 − ab − ac − ad + ad (8.A.7)

+ ad − ad − bd − cd − d2 − 2bc (8.A.8)

= a + d − a(a + b + c + d) + ad (8.A.9)

+ ad − d(a + b + c + d) − 2bc (8.A.10)

= 2(ad − bc). (8.A.11)

The denominator becomes

De = 1 − (a + b)(a + c) − (c + d)(b + d) (8.A.12)

= (a + b) + (c + d) − (a + b)(a + c) − (c + d)(b + d) (8.A.13)

= (a + b)(1 − (a + c)) + (c + d)(1 − (b + d)) (8.A.14)

= (a + b)(b + d) + (c + d)(a + c). (8.A.15)

(8.A.16)

Putting the two together, we obtain

𝜅 = 2(ad − bc)
(a + b)(b + d) + (a + c)(c + d)

. (8.A.17)

8.A.2 DIVERSITY MEASURE EQUIVALENCE

Here we prove the equivalence between the averaged disagreement measure Dav and
Kohavi–Wolpert variance KW.
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Recall that l(zj) is the number of correct votes (1s) for object zj. The Kohavi–
Wolpert variance [215], in the case of two alternatives, 0 and 1, is

KW = 1
NL2

N∑
j=1

l(zj)(L − l(zj)) (8.A.18)

= 1
NL2

N∑
j=1

(
L∑

i=1

yj,i

)(
L −

L∑
i=1

yj,i

)
= 1

NL2

N∑
j=1

j, (8.A.19)

where

j =

(
L∑

i=1

yj,i

)(
L −

L∑
i=1

yj,i

)
. (8.A.20)

The disagreement measure between Di and Dk used in [368] can be written as

Di,k =
1
N

N∑
j=1

(yj,i − yj,k)2
. (8.A.21)

Averaging over all pairs of classifiers i, k,

Dav = 1
L(L − 1)

L∑
i=1

L∑
k=1i≠k

1
N

N∑
j=1

(yj,i − yj,k)2 (8.A.22)

= 1
NL(L − 1)

N∑
j=1

L∑
i=1

L∑
k=1i≠k

(yj,i − yj,k)2

= 1
NL(L − 1)

N∑
j=1

j, (8.A.23)

where

j =
L∑

i=1

L∑
k=1i≠k

(yj,i − yj,k)2
. (8.A.24)

Dropping the index j for convenience and noticing that y2
i = yi,

 = L

(
L∑

i=1

yi

)
−

(
L∑

i=1

yi

)2

(8.A.25)
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= L

(
L∑

i=1

yi

)
−

(
L∑

i=1

y2
i

)
−

(
L∑

i=1

L∑
k=1i≠k
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= (L − 1)

(
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−

(
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On the other hand,

 =
L∑

i=1

L∑
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(
y2

i − 2yiyk + y2
k

)
(8.A.28)

= 2(L − 1)

(
L∑

i=1

yi

)
− 2

(
L∑

i=1

L∑
k=1i≠k

yiyk

)
(8.A.29)

= 2. (8.A.30)

Therefore,

KW = L − 1
2L

Dav. (8.A.31)

Since the two diversity measures differ by a coefficient, their correlation with
Pmaj − Pmean will be the same.

8.A.3 INDEPENDENT OUTPUTS ≠ INDEPENDENT ERRORS

The code below calculates the example in Section 8.3.3. In addition to the values
needed for Table 8.5, the program prints the individual errors, the majority vote error,
the error of the largest prior classifier, and the Bayes error.

It also verifies the results by a numerical simulation. One thousand classifier
outputs are generated simulating the desired distribution. Any probability estimates
from the data are identical to those in Table 8.5. The correlation coefficients are
calculated and displayed for the outputs and for the errors, showing that uncorrelated
outputs (in this case they are necessarily independent) may have correlated errors
rendering majority vote useless.

1 %-------------------------------------------------------------------%
2

3 p = 0.8; % Bernoulli probability for class 1
4 w = 0.001; % fixed error for the wrong class
5 t = dec2bin(0:7,3);
6 t = reshape(str2num(t(:)),8,3); % labels (0 Lisa,1 Bart)
7 pmf = prod(p.ˆt.*(1-p).ˆ(1-t),2); % P(y1,y2,y3)
8 z = sum(t,2); % majority vote score for class 1
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9

10 % Y1 = P(Bart,y1,y2,y3), Y2 = P(Lisa,y1,y2,y3)
11 % .... only unanimity is correct
12 Y1(z == 3) = pmf(z == 3); Y1(z == 0) = 0;
13 Y2(z == 0) = pmf(z == 0); Y2(z == 3) = 0;
14 % .... make majority vote wrong
15 Y1(z == 2) = w; Y2(z == 2) = pmf(z == 2) - w;
16 Y1(z == 1) = pmf(z == 1) - w; Y2(z == 1) = w;
17 Y = [Y1' Y2']; [Ymax,tl] = max(Y');
18

19 % individual errors
20 eri(1) = sum(Y2(find(t(:,1)))+Y1(find(˜t(:,1))));
21 eri(2) = sum(Y2(find(t(:,2)))+Y1(find(˜t(:,2))));
22 eri(3) = sum(Y2(find(t(:,3)))+Y1(find(˜t(:,3))));
23 erm = sum(Y2(z>1) + Y1(z<=1)); % majority vote error
24 erb = 1 - sum(Ymax); % Bayes error
25

25 fprintf('Individual errors %.3f %.3f %.3f\n',eri)
27 fprintf('Majority vote error %.3f\n',erm)
28 fprintf('Largest-prior classifier error %.3f\n',min(sum(Y)))
29 fprintf('Bayes error %.3f\n\n',erb)
30

31 %% Experimental validation
32

33 [data1,data2] = deal([]);
34 for i = 1:8
35 data1 = [data1;repmat(t(i,:),round(Y1(i)*1000),1)];
36 data2 = [data2;repmat(t(i,:),round(Y2(i)*1000),1)];
37 end
38 data = [data1;data2];
39 labels = [ones(size(data1,1),1);zeros(size(data2,1),1)];
40 % experimental individual errors
41 eri_exp = data˜=repmat(labels,1,3);
42 fprintf('---- Calculated from data ----\n')
43 fprintf('Individual errors %.3f %.3f %.3f\n',...
44 mean(eri_exp))
45 fprintf('Majority vote error %.3f\n\n',...
46 mean((sum(data,2)>1)˜=labels))
47

48 fprintf('Correlation between outputs ----\n')
49 disp(corrcoef(data))
50

51 fprintf('Correlation between errors ----\n')
52 disp(corrcoef(eri_exp))
53 %-------------------------------------------------------------------%
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8.A.4 A BOUND ON THE KAPPA-ERROR DIAGRAM

Consider N data points and the contingency table of two classifiers, C1 and C2:

C2 correct C2 wrong
C1 correct a b
C1 wrong c d

where the table entries are the number of points jointly classified as indicated, and
a + b + c + d = N. The averaged individual error for the pair of classifiers is

e = 1
2

(c + d
N

+ b + d
N

)
= b + c + 2d

2N
. (8.A.32)

Recall the expression for 𝜅

𝜅 = 2(ad − bc)
(a + b)(b + d) + (a + c)(c + d)

. (8.A.33)

To facilitate further analyses, it will be convenient to express 𝜅 in terms of e and N. We
can express a and d as functions of b, c, e, and N and substitute in Equation 8.A.33,
which leads to

𝜅 = 1 − 2N(b + c)

4N2e(1 − e) + (b − c)2
. (8.A.34)

The only restrictions on the values of a, b, c and d so far are that each is nonnegative
and they sum up to N. For a fixed e and (b + c), if b ≠ c, there will be a positive
term (b − c)2 in the denominator, which will decrease the fraction, and therefore
increase 𝜅. By requiring that b = c, and hence dropping the respective term from
the denominator, a smaller 𝜅 is obtained

𝜅
′ = 1 − 2b

2Ne(1 − e)
= 1 − b

Ne(1 − e)
≤ 𝜅. (8.A.35)

The minimum value of kappa will be obtained for the largest possible b for the fixed
e. To find this value, consider the following system of equations and inequalities:

e = b + c + 2d
2N

= b + d
N

error (8.A.36)

2b + d ≤ N total count (8.A.37)

d ≥ 0 nonnegativity (8.A.38)
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Expressing d from Equation 8.A.36, d = Ne − b, and substituting in Equation 8.A.37,
we obtain

b ≤ N(1 − e).

On the other hand, substituting in Equation 8.A.38,

b ≤ Ne.

Since both must be satisfied,

bmax = min{N(1 − e), Ne}.

If e ≤ 0.5, bmax = Ne and for e > 0.5, bmax = N(1 − e). Then, the minimum 𝜅 is
given by

𝜅min =

{
1 − 1

1−e
, if 0 < e ≤ 0.5

1 − 1
e
, if 0.5 < e < 1.

(8.A.39)

Note that the bound is tight. It is achievable for b = c and d = max{0, (e − 0.5)N}.

8.A.5 CALCULATION OF THE PARETO FRONTIER

Let A = {a1,… , am} be a set of alternatives (pairs in our case) characterized by a
set of criteria C = {C1,… , CM} (low kappa and low error in our case). Let Ck(ai)
be the value of criterion Ck for alternative ai. Without loss of generality, assume that
lower values are preferable. The Pareto optimal set S∗ ⊆ S contains all nondominated
alternatives. An alternative ai is nondominated if there is no other alternative aj ∈ S,
j ≠ i, such that

Ck(aj) ≤ Ck(ai),

where at least one of these inequalities is strict. The concept is illustrated in Fig-
ure 8.A.1a. Suppose that the figure is a zoom in the kappa-error diagram, and points
A and B are in the convex hull. The x-axis is kappa, and the y-axis is the average
individual error of the classifier pairs. Point C is not in the convex hull because it is
“behind” the segment AB. However, C is better than A on the error criterion and better
than B on the kappa criterion. Therefore, C is nondominated, so it is in the Pareto
optimal set.

The MATLAB function pareto_n, given below, calculates the indices of the
points in the Pareto frontier for n criteria. Use the script below to check out how the
function operates. The code generates a sphere of points, and then approximates a
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FIGURE 8.A.1 Illustration of Pareto optimality.

surface on the Pareto optimal set of points assuming that small values are preferable.
Figure 8.A.1b shows the MATLAB output.

1 %-------------------------------------------------------------------%
2 % Check Pareto
3 a = rand(10000,3); sp = sum((a-0.5).ˆ2,2) < 0.18;
4 a = a(sp,:); P = pareto_n(-a);
5 plot3(a(:,1),a(:,2),a(:,3),'k.'), hold on
6 [x,y] = meshgrid(0:0.01:1,0:0.01:1);
7 z = griddata(a(P,1),a(P,2),a(P,3),x,y);
8 surf(x,y,z), shading flat, grid on, axis equal
9 rotate3d

10 %-------------------------------------------------------------------%

1 %-------------------------------------------------------------------%
2 function P = pareto_n(a)
3 % --- Pareto-optimal set of alternatives
4 % Input: ----------------------------------------
5 % a: criteria values, the larger the better
6 % = matrix N (alternatives) by n
7 % (criterion values)
8 % Output: --------------------------------------
9 % P: indices of the alternatives in the

10 % Pareto set
11

12 [N,n] = size(a); Mask = zeros(1,N); Mask(1) = 1;
13 for i = 2:N % check each alternative for non-dominance
14 flag = 0; % alternative i is not dominated
15 SM = sum(Mask); P = find(Mask);
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16 for j = 1:SM
17 if sum(a(i,:) <= a(P(j),:)) == n
18 flag = 1; % i is dominated
19 end
20 end
21 if flag == 0 % still not dominated!
22 % eliminate members of P which i dominates
23 for j = 1:SM
24 if sum(a(P(j),:) <= a(i,:)) == n
25 Mask(P(j)) = 0;
26 end
27 end
28 Mask(i) = 1; % add alternative i
29 end
30 end
31 P = find(Mask);
32 %-------------------------------------------------------------------%



9
ENSEMBLE FEATURE SELECTION

9.1 PRELIMINARIES

9.1.1 Right and Wrong Protocols

It is important that feature selection experiments are “clean,” an issue that has been
often overlooked [370]. In this context, “clean” means that the testing data which
evaluates the quality of a classifier and a feature subset must not have been seen at
any point during the training. This concern is valid for any feature selection protocol,
ensemble based and nonensemble based alike. A typical example of a wrong protocol
is shown in Figure 9.1. Suppose that we are interested in evaluating a ranking method R
using a labeled data set Z, and the parameter that needs tuning is the number of selected
features d out of n. The steps in the protocol shown in the figure are as follows:

A. Carry out a cross-validation on Z. Train a ranker on the training part of the
ith fold, and estimate the number of features di on the testing part of the fold.
Average the results to find one final recommended value of d.

B. By this point, the parameter d is tuned, and can be applied to the whole data
set to find an optimal feature subset S. The ranker is applied to Z, and the top
d features are retained as S.

C. A new cross-validation on Z is carried out to evaluate the testing error of
classifier C using only subset S.

Combining Pattern Classifiers: Methods and Algorithms, Second Edition. Ludmila I. Kuncheva.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Cross-validation on Z

Train ith ranker

Choose number
of features di

Data
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Apply the
ranker on Z
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set S with the
top d features

d

Z

E

1

Train classifier Ci
using S 

Test classifier Ci
using S 

C
Cross-validation on Z

S

B

S

FIGURE 9.1 Incorrect but often used protocol for feature selection and classification.

The misconception here is that the cross-validation protocol, applied for finding
both d and C will give us a faithful estimate of the error of C using S. This error
estimate is denoted by E in Figure 9.1.

Unfortunately, this is not the case. The protocol is sound up to finding d and S, but
is contaminated when estimating the error of C. The problem is that Z has already
been used to select S. This practice has been flagged as a problem quite a few times,
for example, in fMRI studies, where it is called “peeking” [308]. Sometimes the
possible optimistic bias of the error is acknowledged [149] but quite often no such
awareness is demonstrated. This casts a doubt on feature selection studies, especially
in application areas where pattern recognition and machine learning are still a luxury
tool rather than the norm.

In defence of the peeking practice, the optimistic bias may not be very large, and
the results may still be valid. Nonetheless, credible claims can only be made on a
clean experiment.

Figure 9.2 shows an example of a noncontaminated protocol. To start with, note
in both Figures 9.1 and 9.2 black markers with numbers inside. Number 1 indicates
the overall training protocol and number 2, the calculation of the output returned to
the user. The top part in Figure 9.2 shows a standard classifier training protocol with
steps 1 and 2. The purpose of step 1 is to evaluate the classifier error E. Once this is
completed, the classifier to be returned to the user is trained on the whole of Z. The
“guarantee” that goes out with this classifier is the error rate E. The vital presumption
here is that a classifier trained on a larger set than those used in step 1 will have a
generalization error no worse than E.

A possible step 2 for the protocol in Figure 9.1 is to use S found in step 1 and train
a classifier on the whole of Z. However, the returned E may not be a truthful estimate
of the generalization error.

The bottom part of Figure 9.2 shows an example of a clean protocol for feature
selection and estimation of the classification error, applicable for both ensemble-
based and nonensemble-based feature selection. This time the sub-steps inside step 1
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C
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FIGURE 9.2 An example of a noncontaminated experimental protocol for feature selection
and classification.

are as follows:

� Carry out a K-fold cross-validation using Z. Denote the ith training fold Zi+,
and the ith testing fold Zi− (Zi+ ∪ Zi− = Z). For each i, i = 1… , K:

A. Carry out an internal cross-validation on Zi+. Train a ranker on the
training part of the jth internal fold, and estimate the number of features
dij on the testing part of the fold. Average the results to find one final
recommended value of di for the outer cross-validation fold.

B. The ranker is applied to Zi+, and the top di features are retained as Si.
Train a classifier Ci on Zi+ using only subset Si.

C. Test Ci on Zi−.

� Calculate the error E as the average of the testing errors of the K folds.

Note that the testing set of each fold, Zi−, is reserved for estimating the accuracy
of the whole sequence of estimation of di and training of Ci. The testing set is not
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seen through any of these steps. Therefore, it estimates the error of the whole package⟨feature selection+classifier training⟩.
The correct protocol allows for a straightforward step 2 to be executed. Cross-

validation of the whole of Z is carried out to determine d as in step A in Figure 9.1.
The feature set S is determined by running the ranker through Z and retaining the top
d features, as in step B of the same figure. Finally, a classifier is trained on Z using
S. The selected feature set S and the final classifier C are exactly the same as the
ones in step 2 with the wrong protocol. The difference is in the estimate E. Although
this seems to be a minor glitch, the results returned to the user may be misleading,
and may have unpleasant implications if taken at face value and applied to real-life
problems. The magnitude of the bias will likely depend on the types of the feature
selector and classifier, as well as on some properties of the data.

◻◼ Example 9.1 Optimistic bias of the wrong protocol
We ran an experiment on the “spam” data set from the UCI collection [22]. The data
set has the following characteristics

Number of objects N 4601
Number of features n 57
Number of classes c 2
Percentage of data in the larger class 60.6%

The problem is to distinguish between spam and legitimate e-mail. The first 54
features are the frequencies of each of the 48 words and each of the 6 characters. The
remaining three features are the average length of uninterrupted sequences of capital
letters, the length of the longest uninterrupted sequence of capital letters, and total
number of capital letters in the e-mail. All features are continuous-valued.

Tenfold cross-validations were run with the protocol in Figure 9.1, and as the
internal and the external loops in Figure 9.2. One hundred runs were carried out
where 200 data points were randomly chosen to be the data set Z, and the remaining
4401 data points were left for testing. The classification error E was calculated once
through the wrong protocol (Ew) and once through the correct one (Ec). For each
200/4401 split, the corresponding error E was calculated from the testing set left
aside. A two-sided signed rank test was carried out, once for Ew and E, and once
for Ec and E. The null hypothesis is that the difference between the two variables
comes from a distribution with median zero, or, in other words, there is no bias. The
p-value for the test (Ew, E) was p = 0.0357 < 0.05, rejecting the null hypothesis and
suggesting that there is bias. The p-value for the test (Ec, E) was p = 0.0891 > 0.05,
so the null hypothesis cannot be rejected. The mean values for the wrong protocol
were Ēw = 30.47% and Ē = 31.37%, and for the correct protocol, Ēc = 32.27% and
Ē = 32.84%.

The figures and the examples are about feature rankers and tuning the number
of features d, but the concerns hold for any feature selection method or parame-
ter tuning. The internal and external training–testing protocol does not have to be
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FIGURE 9.3 A summary diagram of ensemble feature selection approaches.

cross-validation. The message here is that the testing data must not be seen at any
part of the training, including feature selection and parameter tuning.

9.1.2 Ensemble Feature Selection Approaches

Continuing from 1.6.2, here we introduce approaches and methods for ensemble
feature selection as summarized in Figure 9.3. The first question is about the goal of
the feature selection.

Sometimes the features are interpretable, and the end user is interested in finding
a highly informative subset. We call this “feature selection by the ensemble.” For
example, in functional magnetic resonance imaging (fMRI), each feature is a voxel
in the brain image. A subset of informative features may reveal parts of the brain
whose activity is related to a certain cognitive task. The classification accuracy in such
problems is of secondary interest, and serves to ensure the quality of the selected
feature subset. The output of this approach is the feature set, which can be used
subsequently with classifiers or ensembles of choice.

The alternative approach, called here “feature selection for the ensemble” aims at
selecting features which improve the performance of the ensemble. The output is the
ensemble itself, and the feature selection is rather a means to an end.

9.1.3 Natural Grouping

In some problems the features are naturally grouped. For example, in text-independent
speaker identification, two groups of features are related to the pitch of the signal, and
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the speech spectrum. The speech spectrum can be further characterized by the linear
predictive coefficients, the cepstrum, and so on [72]. In handwritten digit recognition,
an image can be viewed from different perspectives such as pixels, morphological
features, Fourier coefficients of the character shapes, and so on [109, 399]. Emotion
recognition is typically a multi-modal classification problem where the input comes
from various modalities: physiological measurements of the peripheral nervous sys-
tem such as electrodermal skin response and heart rate, electroencephalography
(EEG), behavioral cues, voice modulation, facial expressions, and so on [63]. Some-
times the groups of features are measured at different geographical locations, for
example, radar images of a flying object. Instead of transmitting all the features and
making a decision centrally, individual classifiers can be built and only their decisions
will have to be transmitted.

In terms of the methods’ diagram in Figure 9.3, having naturally grouped features
will amount to a ready-made feature selection for the ensemble. Each ensemble
member is trained on its bespoke feature set [208, 398].

9.2 RANKING BY DECISION TREE ENSEMBLES

The decision tree classifier offers several ways of measuring the importance of indi-
vidual features [50, 149, 267, 378].

9.2.1 Simple Count and Split Criterion

Consider a bagging ensemble of decision trees. The features in the problem can be
ranked by the number of times they have been used to split a node.

To refine and stabilize the measure of feature importance, we can include the value
of the criterion at the split. This value should be weighted by the number of training
points that arrived at the node. For example, suppose that the reduction of the Gini
impurity at node t is Δ(t) = 0.1, and the number of points at the node is Nt = 60.
Then a value of NΔ(t) = 6 will be added to the score for the feature responsible for
the split at t. The total score for a feature is calculated by summing up all such values
across all trees in the ensemble.

◻◼ Example 9.2 Simple count and Gini-sum feature ranking
To illustrate the two ranking methods we used the “mfeat” UCI data set. The set
consists of features extracted from handwritten digits from 0 to 9. The “‘pix” version
of data set was used because the feature importance can be easily visualized. Each
object is described by 240 features which are the gray level intensities of the pixels
in a 16-by-15 matrix containing the image. This allows us to use a matrix of the same
size where the intensity of each pixel will correspond to that feature’s importance.

We chose only three classes: 3, 6, and 8, examples of which are shown in Figure 9.4.
The reason for this choice is that we know where the differences should be and can
judge visually whether the feature importance is adequate.
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FIGURE 9.4 Examples of handwritten digits in the three classes.

The data was split into training and testing halves. Twenty-five decision trees were
trained on the training part, and the features were ranked according to their importance
by the simple count (ranking R1) and the reduction of the Gini impurity (ranking R2).
Figures 9.5a and 9.5b show the feature importance as gray level intensities of the
corresponding pixels. The results were obtained as the average of 25 runs. Both
plots place the most important pixels in two locations; row 6 column 12, which
distinguishes between 6 and (3,8) and row 11 column 3, which distinguishes between
3 and (6,8). Arguably, the Gini-impurity ranking is less noisy than the simple count
ranking.

Figure 9.5c shows the testing error (average of 25 runs) of the two rankings and
of a random permutation of the features. The linear discriminant classifier (LDC)

(a) Count importance

(b) Gini-sum importance
(c) LDC classification error with the selected features
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FIGURE 9.5 Results with the two feature ranking methods. Darker color in (a) and (b)
signify higher importance.
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was chosen for the task. A point on the curve at number of features d is the testing
error of the LDC using a feature set with the top d features of the respective ranking.
The random permutation curve is above the other two for a small number of features.
However, our experiment did not reveal any difference between the two ranking
methods. This is not to say that such difference may never be found. The result
merely brings up again the pattern recognition mantra that simple methods usually
work very well for the majority of problems.

9.2.2 Permuted Features or the “Noised-up” Method

The hypothesis for this approach is that if a feature is important, then shuffling
its values in the testing data will increase the error dramatically. Conversely, if the
feature is irrelevant, shuffling its values will not have a great effect on the error. The
approach was first proposed for the random forest ensemble [50] but can be applied to
any ensemble that provides out-of-bag (OOB) data. Feature selection is done together
with ensemble training, without seeing testing or validation data. The algorithm is
illustrated in Figure 9.6.

Feature evaluation happens along the testing of each classifier on the respective
OOB. The values of each feature are permuted within the OOB and the classifier
is tested again. The labels are stored for further use. At the end of the training, the
ensemble error e is evaluated on the OOB. Next, n more ensemble errors e1,… , en
are calculated, one for each noised-up feature. The merit of the feature is Fj = ej − e.

NOISED-UP FEATURE RANKING

Given is a labeled data set Z = {z1,… , zN} described by n features in the set
X = {X1,… , Xn}.
1. Choose the ensemble size L.
2. For each i = 1,… , L.

(a) Take a bootstrap sample Si from Z and train classifier Di on it. Denote by Oi the
out-of-bag (OOB) set. Test Di on Oi and store the assigned labels.

(b) For every feature Xj, j = 1,… , n,
i. Permute the values of Xj in Oi. Denote the new set O′

i .
ii. Test Di on O′

i , and store the assigned labels.

3. For each j = 1,… , N, derive the ensemble label for zi using the labels assigned by all
classifiers which contained zi in their OOB sets. Calculate the ensemble error e.

4. For each feature Xj, j = 1,… , n, calculate the OOB ensemble error ej with the
noised-up Xj. Calculate the feature importance as the error difference

Fj = ej − e.

Return the feature scores F1,… , Fn.

FIGURE 9.6 Noised-up feature selection from a bagging/random forest ensemble [50].
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Breiman illustrated the noised-up ranking method on two data sets with fairly
small n (8 and 16) while building a sizeable ensemble with L = 1000 classifiers. One
problem with larger n is the potentially large number of ties, especially for “wide”
data sets where the number of features exceeds by orders of magnitude the number
of objects. Svetnik et al. [378] propose to use the ensemble margins instead of the
ensemble error. If the average ensemble margin is m, and the average margin with
the noised-up feature Xj is mj, the score for Xj is Fj = m − mj.

◻◼ Example 9.3 The noised-up feature ranking method
The UCI spam data set was used for this example. Twenty-five decision trees were
trained on a random sample of 300 objects. The noised-up ranking was obtained from
the ensemble. The count ranking and the Gini-sum ranking were also computed.
Finally a random permutation of the features was also created as a benchmark.
Figure 9.7 shows the LDC classification error with the ranked features. The curves
are the average of 10 runs of the same experiment with different training–testing splits.

The results with only the top 30 features are shown because further on the covari-
ance matrix of the LDC becomes ill-defined, and a regularized version of the classifier
has to be used. A rapid jump of the error is observed, which obscures the point we
want to make with this illustration.

This time the random ranking has pronouncedly larger error than the other three
ranking methods. Besides, the count selection method seems to have a consistently
higher error than the other two methods. To explore this further, we ran sign rank
test between the Gini ranker and the count ranker, once for each value of the number
of features d from 1 to 30. Figure 9.8a shows the results. The same two curves for
the respective rankers are plotted, and the points where significant differences were
found by the test (p < 0.05) are marked with circles.

Figure 9.8b shows the results from the sign rank test comparing the count ranker
and the “noised-up” ranker. The points where significant difference was found
(p < 0.05) are marked with squares.
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FIGURE 9.7 Feature selection by tree ensembles on the spam data [22] (average of 10
runs). Training: Ntr = 300 objects; testing with linear discriminant classifier (LDC): Ntr = 4301
objects; ensemble size L = 25 classifiers.
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FIGURE 9.8 Results from the sign rank test between the count ranker and: (a) the Gini-sum
ranker; and (b) the noised-up ranker. The points where significant difference was found are
marked with circles (a) and squares (b).

Why are we not using the protocol advocated in Section 9.1.1? The reason is that we
do not need the step to tune the number of features d or recommend a feature subset.
The purpose of this example was to explore the behavior of the classification error,
which did not require an internal loop.

9.3 ENSEMBLES OF RANKERS

9.3.1 The Approach

The rationale for using ensembles instead of simple feature selection procedures is
that the ensemble solution has been found to be much more stable and of the same
or better accuracy [1, 197, 401, 408]. The generic diagram of an ensemble of feature
rankers is shown in Figure 9.9.

As with classifier ensembles, any diversifying heuristic can be employed to create
the rankers. For example, bootstrap samples can be taken as in bagging, and a ranker
can be trained on each replicate [1]. Alternatively, different ranking methods can be
applied to the unaltered data set [374].

Once the rankers have been trained, the “aggregator” fuses them into a final
ranking. The simplest way to do this is to average the L ranks obtained by each
feature.
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FIGURE 9.9 The generic diagram of an ensemble of feature rankers.

◻◼ Example 9.4 A numerical example of a feature ranking ensemble
Consider a problem with n = 10 features and an ensemble of L = 4 rankers. Suppose
that each ranker arranges the features by importance, starting with the most important
one. Let the four ranking lists be

R1 : 4 7 9 6 8 2 1 3 5 10

R2 : 4 2 1 5 7 9 8 3 10 6

R3 : 9 6 4 2 7 1 8 3 5 10

R4 : 9 5 2 4 3 1 8 7 6 10

The ranks of the features are calculated from this arrangement as follows. The top
ranked feature receives rank 1, the next one rank 2, and so on. The last feature receives
rank n, where n is the total number of features. The ranks of the 10 features in the
example are shown below:

Feature No. : 1 2 3 4 5 6 7 8 9 10

From R1 : 7 6 8 1 9 4 2 5 3 10

From R2 : 3 2 8 1 4 10 5 7 6 9

From R3 : 6 4 8 3 9 2 5 7 1 10

From R4 : 6 3 5 4 2 9 8 7 1 10

Average rank 5.50 3.75 7.25 2.25 6.00 6.25 5.00 6.50 2.75 9.75

For instance, feature number 1 appears at the seventhth place in ranking R1, therefore
its rank is 7. The bottom row shows the average ranks. According to these scores, the
ensemble ranking is

Final ranking R : 4 9 2 7 1 5 6 8 3 10

9.3.2 Ranking Methods (Criteria)

Many pattern recognition problems consider only two classes, for example, malig-
nant or benign tissue, fraudulent or legitimate transaction, network attack or normal
service, face or nonface sub-image, and many more. The class of interest is usually
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called the “positive” class, and the other, the “negative” class. Here we consider
feature ranking criteria for two classes. Extensions to multi-class problems are pos-
sible, for example, by using a one-versus-all approach, and average the values of the
criterion.

If the feature of interest x is continuous-valued, the distributions for the two classes
can be estimated and compared. The larger the difference, the better the feature. Given
the relatively small sample sizes in wide data, the typical choices are the t-test and
the Mann–Whitney U test. They both provide an instant feature ranking based on the
respective test statistic.

A continuous-valued x can be thresholded to give a positive or a negative label to
the object. This allows for using the area under the receiver operating characteristic
(ROC) curve as another measure of quality of the features. If x is binary, many more
ranking criteria can be added. A wealth of binary ranking criteria have been studied
for text classification [129]. Using binary values will reduce sensitivity of the feature
but it will also reduce the noise, which, on balance, may prove to be beneficial.

The optimal threshold for splitting a feature can be derived from the training data
[15]. In a training data set of N objects, assuming that all values of x are different,
there are N possible split points. Ideally, all N values should be checked, and the most
favorable threshold should be taken forward to define the binarization.

A split of x at a given threshold T leads to a binary feature x′ and the following
contingency table with proportions calculated from the training data.

x′ = 1 x′ = 0

positive a (true positive) b (false negative)

negative c (false positive) d (true negative)

a + b + c + d = 1.

(9.1)

Here we do not assume that larger values of x correspond to the positive class.
Therefore the labels 1 and 0 can be assigned to x′ in reverse order, giving a mirror
table to (9.1)

x′ = 1 x′ = 0

positive b (true positive) a (false negative)

negative d (false positive) c (true negative)

a + b + c + d = 1.

(9.2)

When calculating the value of a feature, the better of the two assignments should
be taken forward.

The literature abounds with feature ranking criteria [15, 86, 129, 229, 408], exam-
ples of which are listed below

1. Accuracy. Acc = a + d.
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2. Probability ratio. PR = a(c+d)
c(a+b)

.

3. Odds ratio. Odds = ad
bc
.

4. Power. Pow =
(

d
c+d

)k
−
(

b
a+b

)k
, where k is a parameter; recommended value

k = 5.

5. GM measure. This is the geometric mean of sensitivity and specificity

GM =
√

sensitivity × specificity

=
√

ad
(a + b)(c + d)

.

This measure bypasses the possible imbalance of the class prevalence.

6. F1 measure. This measure is the harmonic mean of recall and precision, often
used in document retrieval

F1 =
2 × recall × precision

recall + precision
= a

2a + b + c
.

7. Gini index. To calculate this index we start with Gini impurity

1 − (a + b)2 − (a + c)2 = 2(a + b)(c + d).

The impurity of the set for which x′ = 1 is 2ac
(a+c)2 . It must be weighted by

(a + c), which is the probability of x′ = 1. Including the impurity for x′ = 0,
the overall index is defined as the reduction of impurity

Gini = 2(a + b)(c + d) − 2ac
(a + c)

− 2bd
(b + d)

.

8. Mutual information (MI). MI is one of the most advocated feature selection cri-
teria. Brown et al. [55] offer a valuable review and propose a general framework,
which accommodates most of the past MI criteria. For the 2-by-2 contingency
table 9.1,

MI(x; class)

= a log a
(a + b)(a + c)

+ b log b
(a + b)(b + d)

+ c log c
(a + c)(c + d)

+ d log d
(b + d)(c + d)

.
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9. Chi square. Calculate first the table with the expected proportions assuming
independence between the class label and feature x′

e = {e(i, j)} (9.3)

=

x′ = 1 x′ = 0
positive (a + b)(a + c) (a + b)(b + d)
negative (a + c)(c + d) (b + d)(c + d)

.

The 𝜒
2 statistic is calculated as

𝜒
2 =

2∑
i=1

2∑
j=1

(t(i, j) − e(i, j))2

e(i, j)
,

where t(i, j) is the respective entry in Table 9.1 (t(1, 1) = a, t(1, 2) = b, t(2, 1) =
c and t(2, 2) = d). Larger values of 𝜒2 indicate a better feature.

10. Binormal separation.

BNS =
||||Φ−1

( a
a + b

)
− Φ−1

( c
c + d

)|||| ,

where Φ−1 is the inverse of the cumulative probability function of the normal
distribution. This ranking criterion was highly recommended by Forman [129].

11. Kolmogorov–Smirnov.

KS =
|||| a
a + b

− c
c + d

|||| .
Criteria 1–11 require an exhaustive run through the K splits of x to find the
optimal threshold T . Formally, if the criterion is denoted by C(T) for threshold
T , the value which is used to rank the features is

C∗ = max
T

{C(T)}.

The next three measures treat x as a continuous-valued variable and estimate
its worth in a single calculation.

12. t-test. The Student t-test statistic has been used extensively in fMRI data analysis
for ranking the voxels and determining statistically significant relationships. We
will use the statistic as a ranking criterion (without the test), assuming unequal
variances of the two classes. Denote by m(+) and m(−) the means of x for
the positive and the negative class, respectively, calculated from the training
data. Denote by s(+) and s(−) the respective unbiased estimates of the standard
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deviations. Since we are interested in the magnitude of the difference and not
its sign,

t =

||||||||||
m(+) − m(−)√

s(+)

n(+)
+ s(−)

n(−)

||||||||||
, (9.4)

where n(+) and n(−) are the class counts. Larger values of t mean a better feature.

13. Mann–Whitney U test or Wilcoxon rank-sum test is less affected by outliers
compared to the t-test. To calculate the U statistics, arrange x in ascending
order and calculate the ranks. Sum the ranks for the two classes separately to
get R(+) and R(−). Then

U = min
{

R(+) −
n(+)(n(+) + 1)

2
, R(−) −

n(−)(n(−) + 1)

2

}
. (9.5)

Larger values of U mean a better feature.

14. Area under the ROC curve (AUC). AUC has been one of the preferred criteria
for evaluating the quality of classification algorithms. We will add it as a
feature ranking criterion, acknowledging the recently published study which
warns against over-trusting AUC for small sample sizes [171]. The feature
values are arranged in increasing order, and a threshold is set between every
pair of values. A classifier is associated with each threshold, whose sensitivity
and specificity determine a point on the ROC curve. The AUC is approximated
from these discrete points.

15. SVM is particularly well suited to wide data because it scales linearly along
the feature dimension while tolerating the small sample size by ensuring large
classification margins. The linear-kernel SVM can be used as a feature ranking
algorithm. A feature’s relevance is measured by the absolute value of the weight
for this feature in the linear discriminant function of the trained SVM. This
feature ranking method can be thought of as pseudo-multivariate and falls into
the category of embedded methods [346]. The features are ranked by their
worth if the whole feature set is used with the SVM but this does not mean that
if the top k features were cut off, they will make a good subset. The recursive
feature elimination (RFE) algorithm is an addition to the SVM feature selector,
which brings it a step closer to a true multivariate procedure [165]. Starting
with an SVM on the entire feature set, a fraction of the features with the lowest
weights is dropped. A new SVM is trained with the remaining features, and
subsequently reduced in the same way. The procedure stops when the set of the
desired cardinality is reached. While SVM-RFE has been found to be extremely
useful for wide data such as fMRI data [86], it was discovered that the RFE
step is not always needed [1, 149, 401]. This may happen when the features
are loosely related, and a single SVM captures adequately their relationship.
In such problems, it can be expected that other single-pass ranking algorithms
will fare well too.
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FIGURE 9.10 Testing error for the individual ranker and the ensemble ranker averaged
across the 100 runs. The gray lines are plots of the errors of all individual rankers.

◻◼ Example 9.5 Ensemble ranker for the spam data
A random set of 200 points was taken as training and the remaining 4401 points were
used for testing. With each split, 25 t-test rankers (number 12 in the above list) were
trained on bootstrap samples from the training data. Their individual testing errors
were calculated and stored. The LDC was used for the testing. The ensemble ranking
was found and also evaluated on the testing set. The experiment was repeated 100
times. Figure 9.10 shows the testing error for the individual ranker and the ensemble
ranker averaged across the 100 runs. The gray lines are plots of the errors of all
(100 × 25 = 2500) individual rankers.

The results support the expectation that ensemble of rankers improve on the testing
error of the individual ranker.

9.4 RANDOM FEATURE SELECTION FOR THE ENSEMBLE

9.4.1 Random Subspace Revisited

Here we view the random subspace ensemble introduced in Chapter 6 in the light
of feature selection. Each classifier in the ensemble is built upon a randomly chosen
subset of features of predefined size d. Ho [182] suggests that good results are obtained
for tree classifiers built upon d ≈ n

2
features, where n is the total number of features.

The random subspace method has been found to work well when there is redundant
information but it is “dispersed” across all the features rather than concentrated in a
subset of them [182, 369].

Pȩkalska et al. [307] consider a dissimilarity representation of the objects. Each
of the N objects is described by N features which are the distances to all the objects
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(including itself). Such representation is useful when the data originally contains a
prohibitive number of features or when a similarity measure between objects is easily
available. Pȩkalska et al. proposed using LDC on randomly selected feature subsets
and recommend between 4% and 30% of the (similarity) features as the cardinality
of the selected set.

Latinne et al. [254] propose combining bagging with random selection. B bootstrap
replicates are sampled from the training set Z and, for each replicate, R subsets of
features are chosen. The proportion of features, K, is the third parameter of the
algorithm. The ensemble consists of L = B × R classifiers. The combination between
bagging and feature selection aims at making the ensemble more diverse than when
using either of the methods alone.

The size of the feature subset and the ensemble size are the two parameters of the
random subspace method. When the total number of features is tens of thousands, pre-
selection or post-selection have been proposed. Bertoni et al. [37] eliminate redundant
and irrelevant features by simple ranking, and subsequently select a feature subset
on which they build the random subset ensemble. A different approach was proposed
by Lai et al. [246], which can be viewed as post-selection. First the feature subsets
for the ensemble classifiers are drawn from the whole feature set and then feature
selection takes place separately on each feature sample.

Note that the RS ensemble does not offer an explicit final feature subset. The pur-
pose of the feature selection is to achieve the highest possible classification accuracy.
The reduction of the original feature space comes as a by-product.

9.4.2 Usability, Coverage, and Feature Diversity

The parameters of the random subspace ensemble are the ensemble size L and the
cardinality of the feature subset M. Here we reproduce an argument about choosing
these values based on three related concepts: usability, coverage, and feature diversity
[228].

Consider a data set with a very large number of features such as data coming
from fMRI. In such data sets, a small number of features often contain most of the
information, while the remaining features will contribute only noise to the classifier.

Let X be the feature set of cardinality n. Assume that there are Q “important”
features, set  = {q1,… , qQ},  ⊂ X, where || = Q ≪ n, and the remaining n − Q
features are random noise. We also assume that the cardinality of the subspaces, M,
is much smaller than n. The question is whether we can select “optimal” L and M,
given n and hypothesizing Q.

We start from the postulate that accurate and diverse individual classifiers make the
best ensembles. The subset of features, on which the individual classifiers are built,
can serve as indirect indication for the accuracy and diversity of these classifiers. If
a classifier uses only “noise” features, its accuracy will be no better than random
guessing. Also, classifiers that use the same “important” features will be similar or
identical, therefore redundant in the ensemble. Finally, we would like the whole of
 to be covered, so that important information is not lost. In other words, we would
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like each q ∈  to be selected at least once in the L samples of M features.

Definition 1. A classifier is called usable if its feature subset contains at least one
“important” feature q ∈ .

Definition 2. The usability of the ensemble, Ue, is measured as the proportion
of usable classifiers out of L. An ensemble is called completely usable if it
contains only usable classifiers (Ue = 1).

Definition 3. FSD between S1, S2 ⊂ X, is measured by the cardinality of the set
of nonshared features q ∈  contained within S1 ∪ S2. Two classifiers are non-
identical if their feature subsets differ by at least one “important” feature.

We address the following three questions. Given M, L, n and Q,

1. Usability. What is the probability that the selected ensemble is completely
usable?

2. Coverage. What is the probability that the whole of  will be covered (complete
coverage)?

3. Diversity. What is the probability that the usable classifiers in the ensemble
will be nonidentical (feature set diversity(FSD))?

9.4.2.1 Usability Denote by Y the number of important features within a single
sample (without replacement) of size M from X. Y is a random variable with hyperge-
ometric distribution. (To help with the terminology, consider that the sample is taken
from an urn with a total of n marbles, of which Q are black, and the remaining n − Q
are white. The number of selected marbles in one sample is M. Then Y is the number
of black marbles within the sample.) The probability mass function of Y is

P(Y = i) =

(Q
i

)(n−Q
M−i

)( n
M

) , i = 0, 1,… , Q.

Then the probability of having a usable classifier is

P(usable classifier) = 1 − P(Y = 0) = 1 −

(n−Q
M

)( n
M

) .

Therefore, since the subsets are sampled independently, the probability of having a
completely usable ensemble is

P(Ue = 1) = P(usable classifier)L =

(
1 −

(n−Q
M

)( n
M

) )L

. (9.6)
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The ratio of the two binomial coefficients can be simplified for computational pur-
poses to give

P(Ue = 1) =

(
1 −

M−1∏
i=0

(
1 − Q

n − i

))L

. (9.7)

Since we assumed M ≪ n, the equation can be simplified further to

P(Ue = 1) ≈

(
1 −

(
1 − Q

n

)M
)L

. (9.8)

This approximation is equivalent to approximating the hypergeometric distribution
with a binomial distribution. The intuition is that the population from which the
sample is taken is so vast that sampling with replacement will be approximately
equivalent to sampling without replacement. If sampling is done with replacement, Y
will have a binomial distribution with parameters M and p = Q

n
, and the probability

of a usable classifier will be 1 −
(

1 − Q
n

)M
. Then the probability of a completely

usable ensemble will be as in Equation (9.8).
To calculate the expected value of the degree of usability of the ensemble, let Z

be a random variable expressing the number of usable classifiers in the ensemble.
Z has a hypergeometric distribution with the following parameters. The total is the
number of all possible samples (without replacement) of size M from X, that is,

( n
M

)
.

The number of usable classifiers is calculated by taking the number of non-usable
classifiers,

(n−Q
M

)
, from the total. The number of selected classifiers at a time is L.

The expected value of Z is Selected×Usable
Total , therefore the expected usability of the

ensemble is E(U) = 1
L

E[Z].

E(U) = 1
L
× L ×

(
1 −

(n−Q
M

)( n
M

) )
= 1 −

(n−Q
M

)( n
M

) . (9.9)

The expected usability of the ensemble is equivalent to the probability of selecting a
usable classifier, and does not depend on the ensemble size L. Our hypothesis is that
higher usability will lead to accurate ensembles.

9.4.2.2 Coverage For calculating the probability that the whole of  will be cov-
ered, we will again use the binomial approximation to the hypergeometric distribution.
This approximation implies that the features within the selected subset of size M are
sampled independently. Consider an important feature q ∈ . The probability that
a particular feature q in X is hit in M trials is M

n
. Therefore, the probability of not
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selecting q in any of the L classifiers of the ensemble is P(q̄) =
(

1 − M
n

)L
. The prob-

ability of q being in one or more of the L selections is 1 − P(q̄), and the probability
of all features being covered is

P(Complete coverage) =
(

1 −
(

1 − M
n

)L
)Q

. (9.10)

Denote by Z the number of covered features out of Q. Z has binomial distribution

with parameters Q and p = 1 −
(

1 − M
n

)L
. The expected coverage is

E(C) = 1
Q

(
1 −

(
1 − M

n

)L
)

Q = 1 −
(

1 − M
n

)L
. (9.11)

The expected coverage depends on the ensemble size L and the subset size M but not
on Q. Again, the hypothesis is that higher degree of coverage is a prerequisite for a
good ensemble.

9.4.2.3 Feature Set Diversity As argued above, we approximate the hypergeo-
metric distribution that underpins the selection without replacement with a binomial
distribution, where the selection is done with replacement.

Let S1 and S2 be subsets of X, both of cardinality M. Denote by I1 ⊆  and I2 ⊆ 

the respective subsets of “important” features within S1 and S2. Define FSD by

FSD(S1, S2) = |I1 ∪ I2| − |I1 ∩ I2|.
Each feature q ∈  may or may not contribute to FSD. A value of 1 will be added if
q is in either set but not in both. Then the expected diversity for any pair of subsets
S1 and S2 is

E(FSD) =
Q∑

i=1

P(qi ∈ I1)P(qi ∉ I2) + P(qi ∉ I1)P(qi ∈ I2). (9.12)

Since all features in  have identical chance of M
n

to be selected in a subset of size
M, and the subsets are drawn independently,

E(FSD) = 2Q
M
n

(
1 − M

n

)
. (9.13)
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The probability of selecting randomly two identical classifiers (I1 = I2, regardless
of the nonimportant features) is

P(2id) =
min{Q,M}∑

j=1

P(Choose two sets with j important)

×P(match)

=
min{Q,M}∑

j=1

(Q
j

)2(n−Q
M−j

)2

( n
M

)2
× 1(Q

j

)
=

min{Q,M}∑
j=1

(Q
j

)(n−Q
M−j

)2

( n
M

)2

Finally, the probability of having an ensemble where every pair of classifiers is
nonidentical is

P(All pairs non-id) =
⎛⎜⎜⎜⎝1 −

min{Q,M}∑
j=1

(Q
j

)(n−Q
M−j

)2

( n
M

)2

⎞⎟⎟⎟⎠
L(L−1)

2

(9.14)

This calculation disregards nonusable classifiers. So an ensemble can be diverse even
if it contains nonusable classifiers for which I1 = I2 = ∅.

9.4.2.4 Simulation Results Figure 9.11 shows the theoretical and simulated
curves for E(U) (9.9), E(C) (9.11), and E(FSD) (9.12) for n = 1000, Q = 100, and

200 400 600 800

10

20

30

40

Feature set size M
200 400 600 800

0.2

0.4

0.6

0.8

Feature set size M
200 400 600 800

0.2

0.4

0.6

0.8

Feature set size M

E(U) E(C) E(FSD)

Feature Set DiversityCoverageUsability

FIGURE 9.11 Theoretical and simulation curves (coinciding) for the expected values of
U, C, and FSD for n = 1000, Q = 100, and L = 10. The empirical curve is calculated as an
average of 10 ensembles with randomly sampled L = 10 sets of M features.
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L = 10. Changing the value of L to 50 and 100, and Q to 10 and 50 did not lead
to large differences in the shapes and positions of the curves. The results suggest
that values of M close to n

2
are optimal as all three criteria reach their maxima, also

observed across different ensemble sizes.
It is interesting to find out which of the three criteria has the largest impact on

the ensemble error. For now, without knowing the value of Q, we take forward the
wisdom that for problems with very large n, where only a small number of features
may be relevant, the RS ensembles benefit from relatively small L, say L ≤ 100, and
M ≈ n

2
.

◻◼ Example 9.6 A random subspace ensemble on an fMRI data set
Here we reproduce an example from a previous work [225]. We used an fMRI data set
collected at the School of Psychology, University of Bangor, UK. The data consisted
of the single-subject’s fMRI responses to two types of stimuli: faces and places. Each
presentation of a stimulus defined a point in the data set. The total number of features
was 106,720 and the number of objects was 24, 12 in each class. The classification
task was to predict which type of stimuli the subject is looking at, judging by the fMRI
response. We trained RS ensembles with SVM as the base classifier. First, n = 1000
features were pre-selected by the SVM method [86]. A three-fold cross-validation
was applied to test the RS ensemble for a 10 × 10 grid of values for M and L. M was
varied from 1 to n at equal intervals, and L was varied from 1 to n∕5. Figure 9.12
plots the surface of the ensemble error over the (L, M) grid. The best values of
M = 500 and L = 100 are marked as lines on the 3D plot. The lines intersect near the
minimum of the error surface, which confirms empirically the recommendation for
L and M.
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FIGURE 9.12 RS error on the real fMRI data set as a function of the ensemble size L and
the feature size M [225].
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The figure shows that M has a more profound effect on the error than L, and M = n
2

works well for most values of L. This demonstrates the robustness of RS with respect
to L.

9.4.3 Genetic Algorithms

We can apply various heuristic search techniques for feature subset selection, for
example, evolutionary algorithms, tabu search, and simulated annealing. Genetic
algorithms (GAs) appeared to be the preferred heuristic search tool for ensemble
feature selection [162, 238, 242, 294, 390, 437].

9.4.3.1 Basics of Genetic Algorithms A sketch of a loop in a typical genetic
algorithm is shown in Figure 9.13. Genetic algorithms evolve a population of “chro-
mosomes” (genotypes). Applied to feature selection, a chromosome represents a
feature subset. Suppose that there are n features. In the typical encoding, a feature
subset is represented as a binary vector with n elements. If bit i is 1, the ith fea-
ture is included in the subset. A “generation” contains k chromosomes, where k is
called the population size. Each chromosome is evaluated to determine its fitness.
Any criterion that evaluates a feature subset can be applied as a fitness function. For
example, a filter approach uses some measure of separability between the classes,
whereas a wrapper approach trains a classifier (the phenotype) with the features in
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FIGURE 9.13 The genetic algorithm loop.
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the chromosome and returns the classification accuracy as the fitness value. A set of
offspring chromosomes is created from the current population taken to be the parents.
Usually, the parents with higher fitness values are given more chance to reproduce.
This selection approach is known as the “roulette wheel” principle.

The two standard genetic operators that create the offspring chromosomes are
crossover and mutation. The crossover takes two parents and swaps parts of the
chromosomes. In a one-point crossover, a random split point between 1 and n is
picked, and the “tails” of the two chromosomes are swapped, thereby creating two
children. The offspring set goes through mutation where each bit is flipped to the
opposite value with a predefined mutation probability Pm. In real life, mutation
probability is very small, but in our genetic algorithm world, this probability is
usually set between 0.1 and 0.15.

The sets of offspring and parents are pooled, and the fittest k chromosome survive
as the next generation. This is known as the “elitist survival strategy.” Alternatively,
we may allow only a certain proportion of the population to be replaced, called “the
generation gap.”

The algorithm is run for a given number of generations or until some stopping
criterion is met. Such a criterion could be a plateau on the average population fitness
or, equivalently, degeneration of the population to nearly identical chromosomes. The
output of a GA is usually the top ranked chromosome. Appendix 9.A.2 gives examples
of MATLAB functions for the basic genetic operators for binary chromosomes:
roulette wheel selection, crossover, and mutation.

By design, a genetic algorithm is meant to converge to a single best solution. The
solution is not guaranteed to be the global maximum of the fitness but the hope is
that many local maxima will be overcome in favor of a better one. Convergence to a
single solution presents a problem if GAs are to be used for feature selection for the
member classifiers. If each chromosome is associated with a feature subset, and the
GA is run to convergence, there will be only one feature subset or near clones thereof.
The diversity in the ensemble will be close to zero. The following two strategies have
been applied to avoid this problem.

Ensemble = Population In this case L feature subsets are evolved individually.
The GA operates on a population of individuals. Each feature subset is a member
of the population. The GA is aiming at finding a single individual of the high-
est possible quality measured by its fitness. The aim in creating an ensemble is
not finding one best classifier but finding classifiers that will be jointly better than
the single best individual. To achieve this, the individual members of the popula-
tion have to be both accurate and diverse. While accuracy is accounted for by the
fitness function, diversity is not. Hence there should be a mechanism for main-
taining diversity and stopping before convergence. Diversity of the feature subsets
(the genotype) does not guarantee diversity of the classifier outputs (the pheno-
type). Nonetheless, diversity in the genotype is the easily available option within this
approach [78, 390]. The deviation of a feature subset from the remaining members
of the population is one possible measure that can be used together with the accuracy
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of the classifier built on this feature subset. In fact, any diversity measure can be
applied here.

◻◼ Example 9.7 Diversity in a population of feature subsets
Let X = {X1,… , X10} be a set of features. A population of six chromosomes (indi-
viduals), S1,… , S6, is displayed below:

S1 0 1 0 1 0 0 0 1 0 0 {X2, X4, X8}
S2 1 1 1 0 0 0 0 0 0 1 {X1, X2, X3, X10}
S3 0 0 1 1 1 1 0 0 0 0 {X3, X4, X5, X6}
S4 0 0 0 0 0 0 0 1 0 1 {X8, X10}
S5 0 1 1 0 0 0 0 0 0 0 {X2, X2}
S6 1 1 0 1 1 1 0 0 1 1 {X1, X2, X4, X5, X6, X9, X10}

The simplest way of calculating how different subset Si is from the remaining
subsets in the population is to use the averaged Hamming distance between Si and each
of the other M − 1 subsets. This is equivalent to the disagreement diversity measure
despite the fact that the chromosomes are not oracle outputs. The disagreement
measure is symmetric, which means that the 0s and the 1s can be swapped with no
change of the value. For the above example, the five distances for S1 are 5, 5, 3, 3, and
6, respectively. Then the “diversity” of S1 can be calculated as d1 = 5+5+3+3+6

5
= 4.4.

Equivalently, dis can be calculated as the sum of the absolute difference between bit
k of chromosome Si and the “averaged” chromosome S̄ = 1

5

∑
Si. The individual

diversities of the other subsets are d2 = 4.4, d3 = 5.2, d4 = 4.8, d5 = 4.0, and d6 =
6.0. Suitably weighted, these diversity values can be taken together with the accuracies
as components of the fitness function.

9.4.3.2 Ensemble = Chromosome In this approach, each individual in the popu-
lation represents the entire ensemble. We can use disjoint subsets (Approach B.1) or
allow for intersection (Approach B.2).

B.1. To represent disjoint subsets, we can keep the length of the vector (the chromo-
some) at n and use integers from 0 to L. The value at position i will denote which
classifier uses feature Xi; zero will indicate that feature Xi is not used at all. An
integer-valued GA can be used to evolve a population of ensembles. The fitness of a
chromosome can be directly a measure of the accuracy of the ensemble represented
by that chromosome. For example, let X be a set of ten features. Consider an ensemble
of four classifiers. A chromosome [1, 1, 4, 0, 3, 3, 1, 2, 3, 3] will denote an ensemble
 = {D1, D2, D3, D4} where D1 uses features X1, X2, and X7; D2 uses X8; D3 uses
X5, X6, X9, and X10; and D4 uses X3. Feature X4 is not used by any of the classifiers.

B.2. To allow any subset of features to be picked by any classifier, the ensemble can
be represented by a binary chromosome of length L × n. The first n bits will represent
the feature subset for classifier D1, followed by the n bits for classifier D2, and so on.
A standard binary-valued GA can be used with this representation.
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Approach B.1 is simpler than B.2 but the requirement that the ensemble members
use disjoint feature subsets might be too restrictive.

9.5 NONRANDOM SELECTION

9.5.1 The “Favorite Class” Model

Oza and Tumer [295] suggest a simple algorithm for selecting feature subsets which
they call input decimation. The ensemble consists of L = c classifiers, where c is the
number of classes. Each classifier has a “favorite” class. To find the feature subset
for classifier Di with favorite class 𝜔i, we start by calculating the correlation between
each feature and the class label variable. The class label variable has value 0 for all
objects which are not in class 𝜔i and 1 for all objects which are in class 𝜔i.

◻◼ Example 9.8 Correlation between a feature and a class label variable
Suppose the data set consists of nine objects labeled in three classes. The values of
feature X1 and the class labels for the objects are as follows:

Object z1 z2 z3 z4 z5 z6 z7 z8 z9

X1 2 1 0 5 4 8 4 9 3

Class 𝜔1 𝜔1 𝜔1 𝜔2 𝜔2 𝜔2 𝜔3 𝜔3 𝜔3

The class label variable for𝜔1 has values [1, 1, 1, 0, 0, 0, 0, 0, 0] for the nine objects.
Its correlation with X1 is −0.75.

The n correlations are sorted by absolute value and the features corresponding to the
ni largest correlations are chosen as the subset for classifier Di. The value ni, ni < n,
is the desired number of retained features for class 𝜔i. These c numbers should be
chosen in advance. Using the selected features, Di is trained to recognize all the c
classes. Selecting the subsets in this way creates diversity within the ensemble. Even
with this simple selection procedure, the ensemble demonstrated better performance
than the random subset selection method [295].

There are numerous feature selection methods and techniques which can be used
instead of the sorted correlations. Such are the methods from the sequential group
(forward and backward selection) [3, 90], the floating selection methods [315], and
so on. Given that the number of subsets needed is the same as the number of classes,
using a more sophisticated feature selection technique will not be too computationally
expensive and will ensure higher quality of the selected feature subset.

9.5.2 The Iterative Model

Another “favorite class” feature selection method is proposed by Puuronen et al.
[318]. They devise various criteria instead of the correlation with the class variable,
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and suggest an iterative procedure by which the selected subsets are updated. The
procedure consists of the following general steps:

1. Generate an initial ensemble of c classifiers according to the “favorite class”
procedure based on correlation.

2. Identify the classifier whose output differs the least from the outputs of the
other classifiers. We shall call this the median classifier. The median classifier
is identified using some pairwise measure of diversity, which we will denote
by Δ(Di, Dj). High values of Δ will denote large disagreement between the
outputs of classifiers Di and Dj. Δ(Di, Dj) = 0 means that Di and Dj produce
identical outputs. The median classifier Dk is found as

Dk = argmin
i

L∑
j=1

Δ(Di, Dj). (9.15)

3. Take the feature subset for Dk. Altering the present/absent status of each feature,
one at a time, produce n classifier candidates to replace the median classifier.
For example, let n = 4 and let Dk be built on features X1 and X3. We can
represent this set as the binary mask [1, 0, 1, 0]. The classifier candidates to
replace Dk will use the following subsets of features: [0, 0, 1, 0] (X3), [1, 1, 1, 0]
(X1, X2, X3), [1, 0, 0, 0] (X1), and [1, 0, 1, 1] (X1, X3, X4). Calculate the ensem-
ble accuracy with each replacement. If there is an improvement, then keep
the replacement with the highest improvement, dismiss the other candidate
classifiers and continue from step 2.

4. Else, stop and return the current ensemble.

This greedy algorithm has been shown experimentally to converge quickly and
to improve upon the initial ensemble. Numerous variants of this simple iterative
procedure can be designed. First, there is no need to select the initial ensemble
according to the “favorite class” procedure. Any ensemble size and any initial subset
of features might be used. In the iterative algorithm in Ref. [389], the initial ensemble
is generated through the random subspace method. Another possible variation of the
procedure, as suggested in Ref. [389], is to check all the ensemble members, not only
the median classifier. In this case, the task of calculating ensemble accuracy for each
classifier candidate for replacement might become computationally prohibitive.

9.5.3 The Incremental Model

Günter and Bunke [163] propose a method for creating classifier ensembles based
on feature subsets. Their ensemble is built gradually, one classifier at a time, so that
the feature subsets selected for each of the previous classifiers are not allowed to be
chosen for the subsequent classifiers. However, intersection of the subsets is allowed.
The authors suggest that any feature selection method could be used and advocate
the floating search for being both robust and computationally reasonable. There are
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various ways in which the ban on the previous subsets can be implemented. Günter
and Bunke use different feature selection algorithms relying on their suboptimality
to produce different feature subsets. To estimate a subset of features S, they use the
ensemble performance rather than the performance of the individual classifier built on
the subset of features. This performance criterion, on its own, will stimulate diversity
in the ensemble. It is not clear how successful such heuristics are in the general case,
but the idea of building the ensemble incrementally by varying the feature subsets is
certainly worth a deeper look.

9.6 A STABILITY INDEX

Why do we need to worry about stability? If an ensemble based on different feature
subsets works well, it is likely that these subsets are diverse. In this scenario, to
fit within the “feature selection FOR the ensemble” approach (Figure 9.3), stability
is actually undesirable. However, if the aim is to return an informative and highly
discriminative feature subset to the user, the perspective changes. This is the case of
“feature selection BY the ensemble,” and we should have confidence that the returned
feature subset is meaningful and robust. In other words, if a different data set sampled
from the same distribution is used to select features, the resultant subset will not be
much different. Stability is a very desirable property in this case.

In spite of the relatively recent start, the research on feature selection stability is
gaining momentum [15, 111, 170, 201, 219, 236, 345, 365, 375, 409, 427]. Here we
reproduce the stability index proposed in Ref. [236].

9.6.1 Consistency Between a Pair of Subsets

Let A and B be subsets of features, A, B ⊂ X, of the same cardinality k. Let r = |A ∩ B|
be the cardinality of the intersection of the two subsets. A list of desirable properties
of a consistency index for a pair of subsets is given below:

1. Monotonicity. For a fixed subset size, k, and number of features, n, the larger
the intersection between the subsets, the higher the value of the consistency
index.

2. Limits. The index should be bound by constants which do not depend on n or
k. The maximum value should be attained when the two subsets are identical,
that is, for r = k.

3. Correction for chance. The index should have a constant value for indepen-
dently drawn subsets of features of the same cardinality, k.

A general form of such an index is

Observed r − Expected r

Maximum r − Expected r
. (9.16)
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Maximum r equals k, achieved when A and B are identical subsets. To evaluate the
expected cardinality of the intersection, consider r to be a random variable obtained
from randomly drawn A and B of size k from a set X of size n (without replacement).
We can think of subset A as fixed. Suppose that the elements of X ⧵ A are colored
in white and those in A are colored in black. A set B of size k is selected without
replacement from X. The number of objects from A (black) selected also in B is a
random variable Y with hypergeometric distribution with probability mass function

P(Y = r) =

(k
r

)(n−k
k−r

)(n
k

) . (9.17)

The expected value of Y for given k and n is k2

n
.

Definition 1. The consistency index for two subsets A ⊂ X and B ⊂ X, such that|A| = |B| = k, where 0 < k < |X| = n, is

IC(A, B) =
r − k2

n

k − k2

n

= rn − k2

k(n − k)
. (9.18)

This index satisfies the three properties above. First, for fixed k and n, IC(A, B)
increases with increasing r. Second, the maximum value of the index, IC(A, B) = 1,
is achieved when r = k. The minimum value of the index is bound from below by −1.
The limit value is attained for k = n

2
and r = 0. Note that IC(A, B) is not defined for

k = 0 and k = n. These are the trivial cases where either no feature is selected or all
features are selected. They are not interesting from the point of view of comparing
feature subsets, so the lack of values for IC(A, B) in these cases is not important. For
completeness, we can assume that IC(A, B) = 0 for both cases. Finally, IC(A, B) will
assume values close to zero for independently drawn A and B because r is expected

to be around k2

n
.

◻◼ Example 9.9 Consistency between two feature rankings
Consider the following two hypothetical sequences of features obtained from two
runs of SFS on a data set with 10 features.

S1 = {X9, X7, X2, X1, X3, X10, X8, X4, X5, X6}

S2 = {X3, X7, X9, X10, X2, X4, X8, X6, X1, X5}

Denote by Si(k) the subset of the first k features of sequence Si.
For example, the cardinality of the intersection of S1(3) and S2(3) is |{X7, X9}| = 2.

Then

IC(S1(3), S2(3)) = 2 × 10 − 32

3(10 − 3)
= 11

21
≈ 0.5238.
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FIGURE 9.14 Consistency index IC and similarities SS (intersection union) and SH (Ham-
ming) for sequences S1 and S2 (the example in the text) plotted against the subset size k.

Figure 9.14 shows IC(S1(k), S2(k)) against the set size k. By introducing the correc-
tion for chance the consistency index IC differs from two indices proposed previously.
Kalousis et al. [201] introduce the similarity index between two subsets of features,
A and B, as

SS(A, B) = 1 − |A| + |B| − 2|A ∩ B||A| + |B| − |A ∩ B| = |A ∩ B||A ∪ B| , (9.19)

where | ⋅ | denotes cardinality, “∩” denotes intersection and “∪” denotes union of
sets. Dunne et al. [111] suggest measuring the stability using the relative Hamming
distance between the masks corresponding to the two subsets, which in set notation
is

SH(A, B) = 1 −
|A ⧵ B| + |B ⧵ A|

n
, (9.20)

where “⧵” is the set-minus operation and n is the total number of features. The two
indices were calculated for S1(k), S2(k) from the example above, where k was varied
from 1 to n. The results are plotted also in Figure 9.14. While all three indices detect
the dip at k = 4 features, SS and SH have a tendency to increase when the size of the
selected set approaches the total number of features n. The point of view advocated
here is that consistency should have high value only if it exceeds the consistency by
chance or by design.

9.6.2 A Stability Index for K Sequences

Let S1, S2,… , SK be the sequences of features on a given data set.
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FIGURE 9.15 Consistency index S and similarities SS (intersection union) and SH (Ham-
ming) for 10 random sequences plotted against the subset size k.

Definition 2. The stability index for a set of sequences of features,  =
{S1, S2,… SK}, for a given set size, k, is the average of all pairwise consistency
indices

S((k)) = 2
K(K − 1)

K−1∑
i=1

K∑
j=i+1

IC(Si(k), Sj(k)). (9.21)

Averaging the pairwise similarities to arrive at a single index is also the approach
adopted for both SS and SH [111, 201]. Denote the averaged indices by S and
H , respectively. To strengthen the argument for correction for chance, Figure 9.15
shows S, S, and H across all pairs of 10 independently generated random
sequences. Only S gives consistency around zero for any number of features k.
Similarly S favors large subsets and H favors large and small but not medium-size
subsets.

MATLAB code for the stability index is given in Appendix 9.A.3.

9.6.3 An Example of Applying the Stability Index

The AUC ranker was tried on the spam data set. Twenty runs were carried out, where
the data was randomly split into a training part with 100 objects and a testing part
with 4501 objects. For each run i, i = 1,… , 20

� The AUC ranker was applied to the training data to create feature ranking Si.
An LDC was trained on subsets of 1, 2,… , 57 features taken in order from Si.
The 57 values of the classification error were stored in vector Pi.
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FIGURE 9.16 Stability and ensemble error for the ROC (AUC) ranker on the spam data set.

� An ensemble of L = 9 feature rankers was trained on bootstrap samples from the
training data. The ensemble feature ranking S′i was obtained by averaging the
nine individual rankings. Again, an LDC was trained on subsets of 1, 2,… , 57
features taken in order from S′i . The 57 values of the ensemble classification
error were stored in vector P′

i .

The stability index was calculated for all feature values (1 to 57) for the individual
rankings S1,… , S20, and also for the ensemble rankings S′1,… , S′20. Figure 9.16a
plots the two stability indices.

Finally, the individual and the ensemble error vectors were averaged across the 20
runs. The averaged curves are plotted in Figure 9.16b.

Expectedly, the feature ranking ensemble stability is higher than the stability of
the individual ranker [1]. To complete the study, we must pair the stability with
the ensemble error. An extremely stable but inaccurate ensemble would be useless.
The purpose of the ensemble is to compile a stable yet accurate feature subset. The
dip of the error curves is roughly where the highest stability is. This indicates that
the data set contains a core set of about 15–20 features, which can be identified
and communicated back to the end user. This example demonstrates that by using
a bootstrap ensemble of feature rankers, we can gain stability without sacrificing
accuracy.
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APPENDIX

9.A.1 MATLAB CODE FOR THE NUMERICAL EXAMPLE OF
ENSEMBLE RANKING

The code below generates four variants of a random permutation of the integers from
1 to 10 interpreted as feature rankings. Each ranking is a distorted version of the
initial permutation. A number of swaps between 1 and 5 is chosen, and then the
swaps are carried out. The version is stored as the ith ranking in array b. Lines 14
and 15 calculate the ranks for the features, the average ranks, and the final ranking.

1 %---------------------------------------------------------%
2 a = randperm(10); % the ”true” ranking
3 b = zeros(4,10); % array for rankings R_1 ... R_4
4 for i = 1:4 % create 4 distorted versions
5 k = randi(5); % choose the # of swaps
6 t = a; % restore the original permutation
7 for j = 1:k
8 r = randperm(10); % choose the swap
9 tt = t([r(1),r(2)]); % take the two values

10 t([r(2),r(1)]) = tt; % assign to swapped places
11 end
12 b(i,:) = t; % store ranking R_i
13 end
14 [~,fr] = sort(b,2); % calculate the feature ranks
15 [~,FinalRanking] = sort(mean(fr)); % sort by average rank
16 disp(FinalRanking) % show the final ranking
17 %---------------------------------------------------------%

9.A.2 MATLAB GA NUGGETS

The code below shows a self-contained example of a genetic algorithm. The roulette
wheel selection, crossover, and mutation are written as functions within the same
MATLAB file but can be saved and used separately. The toy GA has the objective
to create a chromosome whose binary entries alternate so that the ideal solution is
101010101... . The fitness function created as a function handle in lines 6 and 7
measures the proportion of 0s and 1s in correct positions. The code will produce a
figure showing the fitness of the best chromosome and the average population fitness,
as illustrated in Figure 9.A.1.

1 %---------------------------------------------------------%
2 function GA_nuggets
3 n = 50; % chromosome size
4 ps = 20; % population size

b
b
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FIGURE 9.A.1 An example of the MATLAB output from a run of code GA nuggets.

5 Pm = 0.15; % mutation probability
6 fitness = @(x) (sum(x(:,1:2:end),2) +...
7 sum(1-x(:,2:2:end),2))/n;
8

9 figure, xlabel('Generations'), ylabel('Fitness')
10 P = rand(ps,n) > 0.5; % population
11 f = fitness(P);
12

13 for i = 1:100 % 100 generations
14 O = roulette_wheel(P,f);
15 O = crossover(O,ps/2);
16 O = mutate(O,Pm);
17 [f,ix] = sort([f;fitness(O)],'descend');
18 G = [P;O]; P = G(ix(1:ps),:); % new population
19 f = f(1:ps); F(i) = f(1); MF(i) = mean(f); % new f
20 cla, grid on, hold on, plot(1:i,F,'k-',1:i,MF,'rˆ-')
21 drawnow
22 end
23 fprintf('Final fitness = %.2f\n',f(1))
24 legend('Best chromosome','Population average',...
25 'location','SouthEast')
26 end
27

28 function O = roulette_wheel(P,f)
29 ps = size(P,1); % population size and chromosome length
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30 s = cumsum(f) / sum(f); % roulette probability scale
31 O = []; % offspring
32 for i = 1:ps % assuming that the desired #parents is ps
33 idx = find(rand < s); O = [O;P(idx(1),:)];
34 end
35 end
36

37 function C = crossover(O,k)
38 % k = numer of desired cross-overs (usually ps/2)
39 C = []; % set with the 2*k children
40 for i = 1:k % assuming that the desired #parents is ps
41 rp = randperm(size(O,1));
42 c1 = O(rp(1),:); c2 = O(rp(2),:); % the 2 parents
43 cp = randi(size(O,2)-1); % the crosover point
44 C = [C;c1(1:cp) c2(cp+1:end);c2(1:cp) c1(cp+1:end)];
45 end
46 end
47

48 function M = mutate(C,Pm)
49 % Pm = mutation probability
50 mi = rand(size(C)) < Pm; % mutation index
51 M = C; M(mi) = 1-M(mi); % mutated C
52 end
53 %---------------------------------------------------------%

9.A.3 MATLAB CODE FOR THE STABILITY INDEX

The code below calculates the stability index applicable for complete rankings. The
output S contains the stability index for feature sizes 1, 2,… , n. The input A is a
matrix of size n × m, containing the m feature rankings (m > 1). Each column is a
permutation of the integers 1… n. Element a(i, j) is the number of the feature (out of
n) ranked ith in the jth ranking.

1 %---------------------------------------------------------%
2 function S = stability_index(A)
3 [n,m] = size(A); S = [];
4 for i = 1:n
5 Sm = 0;
6 for r1 = 1 : m - 1
7 for r2 = r1 + 1 : m
8 Sm = Sm + consistency_index(A(1:i,r1),...
9 A(1:i,r2), n);

10 end
11 end
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12 S = [S; Sm * 2 /(m * (m - 1))];
13 end
14 %....................................................
15 function ind = consistency_index(A,B,n)
16 k = length(A); r = numel(intersect(A,B));
17 if k == 0 || k == n, ind = 0;
18 else ind = (r*n-k*k)/(k*n-k*k); end
19 %---------------------------------------------------------%
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A FINAL THOUGHT

One of my friends who kindly read the manuscript and returned comments to me said:
“Chapter 10. There isn’t one? No conclusion or retrospective on the past decade?”

Well, wise and prophetic words do not come easily to me. Only that famous Russian
aphorism springs to mind “Нельзя объять необъятное,” which loosely means “you
can’t embrace immensity,” or rather “you can’t embrace the unembraceable.” To me,
the classifier ensemble field is starting to resemble the unembraceable. The lively
interest in the area has led to significant advancements both in the structuring of the
field and in populating this structure with exciting discoveries, ideas, methods, and
results. However, it is impossible to compile a list of the most significant achievements
in the past decade without offending or alienating half of my readership. I will leave
this task to the main judge – time.

What is clear, though, is that classifier ensembles are here to stay. Solving the chal-
lenges of modern pattern recognition and machine learning, surfacing in application
areas such as computer vision, medical research, geosciences, and many more, will
require bespoke research arsenals. It is likely that the field will branch out, and the
relevant fundamental research will be compartmentalized. I look forward to seeing
this happen. I just hope we do not suffer the fate of those building the Tower of Babel,
and we will still be able to understand one another.
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separability, 4

Classes
equiprobable, 83
linearly separable, 10, 71, 76
overlapping, 10
unbalanced, 40, 84

Classification
boundaries, 10
accuracy, 11, 13
margin, 74
regions, 9

Classifier, 9
=inducer, 100
=learner, 100
base, 94
canonical model, 9
comparison, 19
complexity, 82
decision tree, 55
k-nearest neighbor (k-nn), 80, 148

prototype, 80
reference set, 80

largest prior, 98
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Classifier (Continued )
linear discriminant (LDC), 23, 49, 84,

171
regularization of, 51

Naı̈ve Bayes, 66, 130
nearest mean (NMC), 52
neural networks, 68
non-metric, 55
output

abstract level, 111
correlation, 188
independent, 265
measurement level, 112
oracle, 112, 249

output calibration, 144
performance of, 11
quadratic discriminant (QDC), 18, 52
selection, 230
support vector machine (SVM), 73, 146
unstable, 22, 55, 65, 82, 186

Classifier competence, 233
direct k-nn estimate, 233, 238
distance-based k-nn estimate, 235, 238
map, 236
potential functions, 237
pre-estimated regions, 239

Classifier selection
cascade, 244
clustering and selection, 241
dynamic, 233
local class accuracy, 238
regions of competence, 231

Clustering, 35
hierarchical, 36
k-means, 36
non-hierarchical, 36
single linkage, 36

chain effect, 36
Combiner, 176

average, 150, 155, 157, 165, 181
Behavior Knowledge Space (BKS), 132,

172
competition jury, 150
decision templates, 173
equivalence of, 152
generalized mean, 153

level of optimism, 154
linear regression, 166, 168
majority vote, 153, 157, 182, 256

median, 150, 153, 157, 182
minimum/maximum, 150, 152, 157, 180
multinomial, 132
Naı̈ve Bayes, 128
non-trainable, 100
optimality, 113
oracle, 179
plurality vote, 114
product, 150, 154, 155, 162, 164
supra Bayesian, 172
trainable, 100
trimmed mean, 150
unanimity vote, 114
weighted average, 166

Confusion matrix, 14
Consensus theory, 96, 166

linear opinion pool, 167
logarithmic opinion pool, 167

Consistency index, 318
Covariance matrix, 50

singular, 51
Crowdsourcing, 96

Data
labeled, 3
partition, 35
set, 3
wide, 40

Decision boundaries, 32
Decision regions, 9
Decision tree, 55, 295

pruning, 57
binary, 57
C4.5, 64
chi squared test, 61
decision stump, 56
horizon effect, 63
ID3, 64
impurity, 58

entropy, 58
gain ratio, 64
Gini, 58, 252, 295
misclassification, 58

monothetic, 57
omnivariate, 209
pre- and post-pruning, 57
probability estimating (PET), 147
pruning, 63
random, 65, 191
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Discriminant functions, 9, 31
linear, 49
optimal, 10

Diversity, 54, 101, 188, 247
correlation, 249
difficulty 𝜃, 253
disagreement, 250, 268
double fault, 251
entropy, 251
generalized GD, 255
good and bad, 265
kappa, 250, 253
KW, 252
non-pairwise, 251
pairwise, 250
pattern of failure, 256
pattern of success, 256
Q, 249
the uniformity condition, 267

Divide-and-conquer, 98

ECOC, 101, 211
code matrix, 212
codeword, 212
exhaustive code, 213
nested dichotomies, 216
one-versus-all, 213
one-versus-one, 213
random-dense, 214
random-sparse, 214

Ensemble
AdaBoost, 192
arc-x4, 194
bagging, 103, 186
classifier fusion, 104
classifier selection, 99, 104
diversity, 101
error correcting output codes (ECOC),

211
map, 274
random forest, 102, 190
random oracle, 208
random subspace, 203, 305
regression, 248
rotation forest, 65, 204
taxonomy of, 100

Error
added, 271
apparent error rate, 13

approximation, 11
Bayes, 12, 33, 80, 271
confidence interval, 13
estimation, 13
generalization, 11
minimum squared, 68
minimum squared (MSE), 168
model, 12
probability of, 13, 33, 180
Type I, 20
Type II, 20

Evolutionary algorithm, 243

Feature
meta-, 105
ranking, 38
selection, 37

sequential forward selection (SFS),
38

sequential methods, 38
Feature selection

ensemble
input decimation, 315

stability, 319
consistency index, 318

Feature space, 2
intermediate, 105, 143, 166, 172,

174
Features, 2

distinct pattern representation, 2, 97
independent, 7

Friedman test, 27
Function

loss
hinge, 169
logistic, 169
square, 169

Gartner hype cycle, 106
Generalized mean, 153
Genetic algorithm, 172, 312

chromosome, 312
fitness, 312
generation, 312

geometric mean, 164

Hypothesis testing, 21

Iman and Davenport test, 27
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Kappa-error diagrams, 271
Kullback-Leibler divergence, 163

relative entropy, cross-entropy,
information gain, 163

Level of significance, 20
Logistic link function, 145
Loss matrix, 15

Majority vote, 96, 113
optimality, 124
weighted, 125

Margin
ensemble, 196, 267
theory, 74, 196
voting, 196, 265

MATLAB, xvii
Matrix

confusion, 14, 130
covariance, 6
loss, 15

Maximum membership rule, 9, 31
McNemar test, 20
Meta-classifier, 100
Mixture of experts, 242

gating network, 242

Nadeau and Bengio variance amendment,
23

Nemenyi post-hoc test, 29
Neural networks, 68

backpropagation, 243
error backpropagation, 71
error backptopagation

epoch, 72
feed-forward, 71
learning rate, 71
multi-layer perceptron (MLP), 68, 71
radial basis function (RBF), 68
universal approximation, 68, 71

Neuron, 69
activation function, 69

identity, 69
sigmoid, 69
threshold, 69

artificial, 68
net sum, 69
Rosenblatt’s perceptron, 70

convergence theorem, 71
synaptic weights, 69

No free lunch theorem, 82
Non-stationary distributions, 40
Normal distribution, 6

Object/instance/example, 3
Occam’s razor, 82
Out-of-bag data, 16
Overfitting, 10, 16, 17, 82
Overproduce-and-select, 230, 275

best first, 276
convex hull, 276
Pareto, 276
random, 276
SFS, 276

Pareto frontier, 287
Pattern of failure, 119
Pattern of success, 105, 119
Plurality vote, 113
Prevalence of a disease, 116
Probability

density function
class-conditional, 31, 66
unconditional, 31

Laplace correction, 147
Laplace estimate, 147
mass function

class-conditional, 31
posterior, 31, 143

estimate of, 144
prior, 30, 83

Dirichlet, 84

Random forest, 190
Random tree, 65
Regularization

elastic net, 170
LASSO, 170

Regularization
L2, 170

Ridge regression, 170
ROC curve, 301

Sensitivity and specificity, 116
Sign test, 27

critical values, 46
Similarity measures, 174
Softmax, 144, 183
Stacked generalization, 100, 105, 143, 177
Stratified sampling, 16
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SVM, 73
kernel

Gaussian, RBF, 78
neural network, 78
polynomial, 78
trick, 78

recursive feature evaluation (RFE),
304

Structural Risk Minimization (SRM),
75

support vectors, 77

T-test
paired, amended, 24

Training
combiner, 176
epoch, 72
peeking, 17

Training/testing protocols, 16, 290
bootstrap, 16, 23
crossvalidation, 16, 23
data shuffle, 16, 23
hold-out, 16
leave-one-out, 16
resubstitution, 16

Triangle diagram, 83

UCI Machine Learning Repository, 17, 26

Validation data, 17
VC-dimension, 196
Voronoi diagrams, 80, 243

Web of Knowledge, 107
Wilcoxon signed rank test, 26

critical values, 46
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